NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology		
Name of Programme:	BTech CSE		
Course Code:	4CS205ME25		
Course Title:	Analytics of IoT		
Course Type:	Department Elective IV		
Year of Introduction:	2025-26		

L	Т	Practical Component				
		LPW	PW	W	S	C
3	0	2	_	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to –

- 1. summarise the architectural components and platforms of the IoT ecosystem (BL2)
- 2. apply appropriate access technology and protocols as per the application (BL3) requirement
- 3. analyse the role of big data, cloud computing, and data analytics in a typical IoT (BL4) system
- 4. design applications with suitable lightweight data processing and communication (BL6) methodologies.

Unit	Contents	Teaching hours		
Unit-I	Introduction to IoT: importance and applications, IoT architectures, introduction to analytics, IoT analytics challenges			
Unit-II	Primitives of IoT: IoT devices, Networking basics, IoT connectivity protocols, IoT networking, and data messaging protocols, analyzing data to infer protocol and device characteristics	10		
Unit-III	IoT Analytics for the Cloud: Introduction to elastic analytics, Cloud security and analytics, designing data processing for analytics, Applying big data technology to storage	09		
Unit-IV	Exploring IoT Data: Exploring and visualizing data, Techniques to understand data quality, Basic time series analysis, Statistical analysis	07		
Unit-V	Data Science for IoT Analytics: Introduction to Machine Learning, Feature engineering with IoT data, Validation methods, Understanding the bias-variance trade-off, Use cases for deep learning with IoT data	09		
Unit-VI	Strategies to Organize Data for Analytics: Linked Analytical Datasets, Managing data lakes, data retention strategy	05		

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents

Suggested Readings/ References:

- 1. Minteer, Andrew. Analytics for the Internet of Things (IoT). Packt Publishing Ltd
- 2. Kai Hwang, Min Chen, *Big-Data Analytics for Cloud*, IoT and Cognitive Computing, Wiley

- 3. Colin Dow, Hands-On Edge Analytics with Azure IoT: Design and develop IoT applications with edge analytical solutions including Azure IoT Edge, Packt Publishing Ltd
- 4. Hwaiyu Geng, Internet of Things and Data Analytics Handbook, Wiley
- 5. John Soldatos, Building Blocks for IoT Analytics Internet-of-Things Analytics, River **Publishers**
- 6. Gerardus Blokdyk, IoT Analytics A Complete Guide, 5starcooks

Suggested List of Experiments:

Sr. No.	Name of Experiments/Exercises	Hours		
1	Programming the IoT boards: ESP8266/ESP32/Arduino with IDE	02		
2	IoT Applications Development with Cisco Packet Tracer			
3	IoT Sensor and Actuator integration with ESP32/ESP8266 with WiFi and	02		
	HTTP			
4	Implementing REST API Server for IoT devices			
5	Publish and Subscribe with MQTT Client and MQTT Broker using	04		
	RPi/ESP8266/ESP32			
6	IoT Application with NodeRed: MQTT, MongoDB, HTTP REST client	04		
	and server			
7	IoT Application Development with NodeRed: Designing Dashboard for	04		
	IoT Data			
8	Designing IoT Analytics Pipeline on Cloud Platform and Data	04		
	Visualization			
9	Analysing and Processing IoT Data with ML approaches	02		
10	Deploying the inference models on Edge Computing devices	04		