NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	BTech CSE
Course Code:	4CS209DE25
Course Title:	Intrusion Detection and Prevention Systems
Course Type:	Disciplinary Minor- Elective
Year of Introduction:	2025-26

L	T	Practio	ent	C		
		LPW	PW	W	S	
3	0	2	_	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to -

- 1. outline various IDPS technologies, both signature-based and anomaly-based, (BL2) including their strengths and weaknesses
- 2. interpret the fundamental concepts and principles of cybersecurity, including the (BL3) importance of intrusion detection and prevention
- 3. examine various IDPS to assess its effectiveness in identifying and preventing (BL4) intrusions
- 4. evaluate different deployment strategies for IDPS in various network (BL5) environments, including host-based, network-based, and hybrid solutions.

Unit	Contents	Teaching
		Hours
Unit-I	Introduction to IDS and IPS: Understanding Intrusion Detection – Intrusion detection and prevention basics – IDS and IPS analysis schemes, Attacks, Detection approaches –Misuse detection – anomaly detection – specification-based detection – hybrid detection, Types of IPS	(Total 45) 07
Unit-II	Classes of Attacks: Network layer: scans, denial of service, penetration, Application layer: software exploits, code Injection, Human layer: identity theft, root access. Insider Threat issues – Taxonomy, Masquerade and Impersonation, Traitors, Decoys and Deception	09
Unit-III	Signature-Based IDS/IPS, Anomaly-Based IDS/IPS: Signature-based detection and prevention techniques, Snort and Suricata as examples, Signature rule creation Anomaly-based detection and prevention techniques, Machine learning and statistical approaches, Challenges and limitations	09
Unit-IV	IDS/IPS Evasion Techniques: Common evasion techniques, how to detect and prevent evasion, Testing IDS/IPS effectiveness, Theoretical Foundations of Detection Taxonomy of anomaly detection system – fuzzy logic – Bayes theory – Artificial Neural networks – Support vector machine – Evolutionary computation – Association rules – Clustering	12
Unit-V	IDS/IPS Integration with Security, Information, and Event Management (SIEM) The role of IDS/IPS in a SIEM ecosystem, Correlation, and incident response IDS/IPS Policy and Rule Management, Developing	08

and maintaining IDS/IPS policies, Rule management best practices, Rule optimization

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Richard Bejtlich, Tao of Network Security Monitoring: Beyond Intrusion Detection, Addison-Wesley Professional
- 2. Stephen Northcutt, Judy Novak, and Scott Winters, Network Intrusion Detection, Sams Publishing
- 3. Earl Carter, Intrusion Prevention Fundamentals, Cisco Press
- 4. Jack Koziol, Intrusion Detection with Snort, Sams Publishing
- 5. Ali A. Ghorbani, Wei Lu, Mahbod Tavallaee, Network Intrusion Detection and Prevention: Concepts and Techniques, Springer

Suggested List of Experiments:

Suggeste	d List of Experiments:	
Sr. No.	Title	Hours
1	Install and configure open-source IDS/IPS software like Snort or Suricata	02
	on a test network. Also, I will configure basic rule sets and test the system.	
2	Capture and analyze network traffic using tools like Wireshark to	02
	understand normal network behavior.	
3	Install Suricata, an alternative open-source IDS/IPS.	02
	Configure Suricata for intrusion detection and prevention. Test Suricata's	
	rule sets and performance	
4	Write custom Snort rules to detect specific network behaviors. Test the	04
	effectiveness of custom rules in detecting predefined attack patterns.	
5	Use Snort to create and enforce firewall rules based on detected threats.	04
	Verify that the firewall rules effectively block malicious traffic.	
6	, 1	02
	framework. Set up anomaly detection rules in Bro/Zeek. Analyze the	
	generated network logs to identify anomalies.	
7	Install OSSEC, a host-based IDS/IPS. Configure OSSEC to monitor system	04
	logs and file integrity. Trigger and analyze alerts on the test system.	
8	Deploy network-based IDS/IPS devices in the lab environment. Monitor	02
	network traffic and analyze alerts.	
9	Set up a Security Information and Event Management (SIEM) system,	04
	such as ELK Stack.	
	Integrate IDS/IPS alerts with the SIEM.	
10	Explore the deployment of IDS/IPS solutions in a cloud environment.	04
	Configure cloud-based IDS/IPS to protect virtual networks.	