NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	BTech CSE
Course Code:	4CS210DE25
Course Title:	Embedded System Security
Course Type:	Disciplinary Minor- Elective
Year of Introduction:	2025-26

L	T	Practical Component				
	100	LPW	PW	W	S	
3	0	2	-	-	-	4

06

12

15

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to –

- 1. relate the fundamentals of embedded firmware, hardware, and software vulnerabilities (BL2) and their causes
- 2. apply the knowledge of tools and technologies to exploit the vulnerabilities related to (BL3) embedded systems
- 3. implement appropriate countermeasures against the introduced attacks (BL5)
- 4. design hardware-based trust platforms and implement physically unclonable functions. (BL6)

Unit	Contents	Teaching
		Hours
		(Total 45)

- Unit-I **Introduction to Embedded Systems:** Embedded hardware units, Embedded system software, Device drivers and interrupt services, Interprocess communication and synchronization of processes
- Unit-II **Embedded System Security and Trust**: Physical attacks, Sidechannel analysis, Trusted integrated circuit, Trusted platform module (TPM), Hardware Trojans, Cryptographic hashing, Stack-based attacks against embedded systems (Code injection and return-oriented programming), Physically unclonable functions, Fault injection attacks, Reverse engineering, Supply chain security and trust
- Unit-III Embedded Hardware Security and Hacking: Securing external memory, JTAG/Debug port considerations, Physical attack vectors, Temper detection and logging, soldering techniques, Board analysis methodology, Component Identification, Device instrumentation, Bus monitoring and decoding, Access via JTAG
- Unit-IV **Embedded Software Security and Exploitation**: Fundamentals of embedded software security, Common firmware vulnerabilities, Software vulnerabilities in ARM/MIPS/etc., Embedded code vulnerabilities, Assembly code analysis, Exploitation techniques on ARM/MIPS/x86, Defenses against ARM exploits, Security practices for embedded software, Defensive software architectures, Defensive hardware interfaces

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Mohammadm Tehranipoor, Cliff Wang, Introduction to Hardware Security and Trust, Springer
- 2. David Kleidermacher and Mike Kleidermacher, Embedded Systems Security: Practical Methods for Safe and Secure Software and Systems Development, Elsevier Science, Newnes Publication.
- 3. Louis Goubin and Mitsuru Matsui, Cryptographic Hardware and Embedded Systems CHES 2006, Springer
- 4. Colin O'Flynn and Jasper van Woudenberg, The Hardware Hacking Handbook: Breaking Embedded Security with Hardware Attacks, No Starch Press

Suggested List of Experiments:

Sr. No.	Title	Hours
1	Simulate Malware attacks on embedded systems and implement protective measures.	04
2	Simulate Brute-force attacks on embedded systems and implement protective measures.	04
3	Simulate Memory Buffer Overflow attacks on embedded systems and implement protective measures.	06
4	Simulate Man in the Middle attack on embedded systems and implement protective measures.	04
5	Simulate Domain Name System (DNS) poisoning attacks on embedded systems and implement protective measures.	04
6	Simulate Distributed Denial of Service (DDoS) attacks on embedded systems and implement protective measures.	04
7	Simulate Session Hijacking attacks on embedded systems and implement protective measures.	04