NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology	
Name of Programme:	BTech CSE	
Course Code:	4CS401ME25	
Course Title:	High Performance Computing	
Course Type:	Department Elective-III	
Year of Introduction:	2025-26	

L	Т	Practical Component				_
		LPW	PW	W	S	C
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to -

- 1. explain parallel processing systems, parallel architectures, and fundamental (BL2) issues in high performance computing system
- 2. develop and optimize parallel programs using shared memory programming (BL3) and message-passing interface
- 3. develop scientific applications for exploiting the resources of HPC (BL3)
- 4. analyse profiling and benchmarking tools to measure the performance of HPC (BL4) applications.

Unit	Contents			
Unit-I	Parallel Processing Concepts: Levels and model of parallelism: instruction, transaction, task, thread, memory, function, data flow models, demand-driven computation	(Total 45) 06		
Unit-II	Parallel architectures: superscalar architectures, multi-core, multi-threaded, server and cloud			
Unit-III	Fundamental design issues in HPC: Load balancing, scheduling, synchronization, and resource management Algorithms for HPC, Parallel algorithms, analysis of algorithms, and task scheduling	07		
Unit-IV	Operating systems for scalable HPC: Parallel Programming Models - Shared memory programming (OpenMP), Distributed memory programming (MPI), Hybrid programming models	07		
Unit-V	Performance Metrics and Optimization: Performance metrics such as speedup, efficiency, and scalability, Profiling and benchmarking tools; Optimization techniques: loop unrolling, vectorization, and memory optimization	07		
Unit-VI	HPC Systems and Clusters: Supercomputers, clusters, grid computing, Cloud computing for HPC, High-performance interconnects, and networking	06		
Unit-VII	Overview of Advances in computing: Multicore computing, Quantum Computing, Cloud Computing, Petascale computing, Optics in Computing	06		

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Georg Hager and Gerhard Wellein, *Introduction to High Performance Computing for Scientists and Engineers*, CRC Press
- 2. Kai Hwang, Naresh Jotwani, Advance Computer Architecture: Parallelism, Scalability, Programmability, McGraw Hill
- 3. Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis, *Introduction to Parallel Computing*, Pearson
- 4. John L. Hennessy and David A. Patterson. *Computer Architecture: A Quantitative Approach*, Elsevier
- 5. David B. Kirk and Wen-mei W. Hwu, *Programming Massively Parallel Processors: A Hands-On Approach*, Elsevier
- 6. J. L. Hennessy and D. A. Patterson, *Computer Architecture: A Quantitative Approach*, Morgan Kaufmann.

Suggested List of Experiments:

Sr. No.	Name of Experiments/Exercises	Hours
1	Introduction to HPC Environment: Practicing basic Linux commands for Familiarization of Cluster and basic programming using the mathematical library	02
2	Practice Linux commands needed for environmental setup of HPC cluster and accessing HPC resources	02
3	Performance Profiling: Profiling a simple serial program and Identifying bottlenecks using profiling tools (e.g., gprof, perf)	02
4	OpenMP Programming: Writing a simple parallel program using OpenMP	04
5	Using OpenMP directives, write a code for parallelization and understand Performance analysis compared with serial implementation	04
6	MPI Programming : Writing a basic MPI program for distributed memory systems	04
7	Implementing point-to-point communication using MPI_Send and MPI_Recv and Collective communication using MPI_Bcast, MPI_Reduce, and MPI_Gather	04
8-9	Implementing parallel sorting algorithms (e.g., parallel quicksort, merge sort)	06
10	Performance analysis and scalability study of deployed algorithms	02