NIRMA UNIVERSITY

Institute: Institute of Technology, School of Technology W
Name of Programme: | BTech CSE
Course Code: 4CS501CC25
Course Title: Principles of Compiler Design
Course Type: Core
Year of Introduction: | 2025-26
Practical Component]
LT LPW | PW | W | S ¢
310 (2 | - - - |4
Course Learning Outcomes (CLO):
At the end of the course, the students will be able to:
1. summarise the functionalities of various phases of the compiler (BL2)
2. apply language theory concepts to various phases of compiler design (BL3)
3. select the appropriate optimization technique for the compilation process (BL5)
4. implement various compiler phases using the appropriate compiler design tools. (BL6)
Unit Contents Teaching
Hours
(Total 45)
Unit-I Imtroduction: Overview of principles and significance of compiler 03
design, Structure of compiler, Types of compilers and their
applications, The role of language theory in compiler design
Unit-II. Formal Languages and Automata: Introduction to formal languages 06
and their types, the need for automata and formal languages in
compiler design, Deterministic and Non-Deterministic Finite
Automata, Conversion from NFA to DFA, Finite Automata, Regular
Expression to Automata
Unit-III Lexical Analysis: The role of a Lexical Analyzer, Input Buffering, 05
Specifications of Tokens, Recognition of tokens, Lexical Analyzer
Generator
Unit-IV ~ Syntax Analysis: Context-free Grammar, Top-down Parsing, Bottom- 10
up Parsing, LR Parsers, Error Recovery, parsing for ambiguous
grammar, Parsing Generator Tools
Unit-V Semantic Analysis and Intermediate Code Generation: Typical 13
Semantic errors, Static and Dynamic Checks, Syntax directed
definitions (SDD) & Translation schemes (SDT), Type checking,
Syntax Directed Translation Schemes, Type checking, Type Checking,
Intermediate code representations, Three Address Codes, Control
Flow, Back patching
Unit-VI Runtime Environment: Storage Organization, Stack Allocation and 02

Heap Management

267

lemics\Divy_Academics - \Divy-Academics\NOTIFICATIONS\I - ACAD-COUN\53-Noti - AC - 170924\Noti - - 3(B) - 8_IT_BT-CSE - TES_Syllb -
VII_VIII (encl-).docx

Unit-VII Code Generation and Optimization: Issues in code generation, Data

Flow and Control Flow, Peephole Optimization, Register Allocation,
Machine independent optimization techniques, Introduction to cross-

compiler

Self-Study:
The self-study contents will be declared at the commencement of the semester. Around 10%

of the questions will be asked from self-study contents

Suggested Readings/ References:
Aho, Lam, Ullman, Sethi, Compilers, Principles, Techniques and Tools, Pearson
Jean-Paul Trembly & Paul G Sorenson, The Theory and Practice of Compiler

L.
2.

98]

writing, McGraw Hill
Keith D Cooper & Linda Torczon, Engineering a Compiler, Elsevier

06

John C. Martin, Introduction to Languages and Theory of Computation, McGraw

Hill
Michael Sisper, Theory of Computation, Thomson

Suggested List of Experiments:

Sr.
1

2

10

Name of Experiments/Exercises
Getting acquainted with Lexical Analyzer generator tool lex/flex to
recognize tokens from the given code fragment
To implement Lexical Analyzer: Define source programming language
and its constructs (one control construct, two arithmetic operators, one loop
construct). Use the lex/flex tool to generate a token stream for a given
character stream after eliminating comments and other extraneous tokens.
Report lexical errors with line numbers.
To implement symbol table generation: Extend experiment 2 to construct
a symbol table construct (name, data type, address), and add all unique
identifier names to the symbol table.
To implement Syntax Analyzer: Write Context Free Grammar for your
defined programming constructs. Use Lex and YACC tools to validate the
grammar of the input program.
To implement Error recovery in syntax analyzer: Apply error recovery
in experiment 4 to list syntax errors in the input program.
To Implement a semantic analyzer: Write semantics for declaration
statements to update the data type of symbols in the symbol table. Also,
perform a semantic check to verify and report the use of undeclared
variables and redeclaration of variables
To implement three address code generators for control statements:
Write semantic rules to generate three address codes for control statements
To implement three address code generator part II: write semantic rules to

generate

Hours
02

02

02

04

04

04

04

04

To implement Assembly code generator.: Implement getreg() to allocate 02

registers to variables in given three address code.

To implement Code Optimization techniques: Implement any code 02

optimization technique.

268

D:\Divy_Academics\Divy_Academics - [\Divy-Academics\NOTIFICATIONS\I - ACAD-COUN\53-Noti - AC - 170924\Noti - - 3(B) - 8_IT_BT-CSE - TES_Syllb -

VII_VIII {encl-).docx

