NIRMA UNIVERSITY

A TARACTER VITE T ARENAL A				
Institute:	Institute of Technology, School of Technology			
Name of Programme:	MTech CSE, MTech CSE (Data Science)			
Course Code:	6CS203CC22			
Course Title:	Applied Machine Learning			
Course Type:	Core			
Year of Introduction:	2022-23			

L	T	Practical Component				С
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to -

- 1. explain statistical methods as the basis of the machine learning domain (BL2)
- 2. identify the learning algorithms for appropriate applications (BL3)
- 3. analyse machine learning techniques to solve problems in applicable (BL4) domains
- 4. evaluate algorithms based on different metrics and parameters. (BL5)

Unit	Contents	Teaching Hours (Total 45)
Unit-I	Introduction to AML: Motivation and Applications, importance of Data Visualisation, Basics of Supervised and Unsupervised Learning, Significance of Model Training	03
Unit-II	Regression Techniques: Basic concepts and applications of Regression, Simple Linear Regression – Gradient Descent and Normal Equation Method, Multiple Linear Regression, Non-Linear Regression, Linear Regression with Regularization, Hyper-parameters tuning, and Loss Functions	14
Unit-III	Classification Techniques: Naïve Bayes Classification, Fitting Multivariate Bernoulli Distribution, Gaussian Distribution and Multinomial Distribution, K-Nearest Neighbours, Decision trees. Support Vector Machines: Hard Margin and Soft Margin, Kernels and Kernel Trick, Evaluation Measures for Classification Techniques	10
Unit-IV	Model Evaluation: Bias, Variance, Cross-validation, Precision- Recall, ROC Curve, Out-of-Bag metric, the evaluation metric for regression	03
Unit-V	Artificial Neural Networks: Biological Neurons and Biological Neural Networks, Perceptron Learning, Activation Functions, Multilayer Perceptrons, Back-propagation Neural Networks, Competitive Neural Networks, Regularization	08

154

- Unit-VI **Clustering**: K-means Clustering Algorithm, Expectation 04 Maximization, Convergence, Application of K-means, Gaussian Mixture Models: EM for GMM
- Unit- VII Advanced Concepts: Basics of Semi-Supervised and Reinforcement 03 Learning, PCA, Linear Discriminant Analysis, Introduction to Deep Learning.

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Tom Mitchell, Machine Learning, McGraw Hill
- 2. C. Bishop, Pattern Recognition and Machine Learning, Springer
- 3. R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification and Scene Analysis, Wiley
- 4. Kishan Mehrotra, Chilukuri Mohan, and Sanjay Ranka, Elements of Artificial Neural Networks, Penram International

Hours

02

02

02

04

- 5. Rajjan Shinghal, Pattern Recognition, Techniques and Applications, OXFORD
- 6. Athem Ealpaydin, Introduction to Machine Learning, Prentice Hall.

Suggested List of Experiments: Sr. Name of Experiments/Exercises No. 1 Introduction to Python and Numpy 2 Introduction to Pandas, Matplotlib and Sklearn 3 Simple and Multiple Linear Regression using Gradient Descent and normal 04 Equation Methods (without using sklearn or equivalent library for both) Linear Regression with Regularization (without using sklearn or equivalent 4 library) and Simple and Multiple Linear Regression with and without regularization using Sklearn 5 Naïve-Bayes - Multivariate Bernoulli, Multinomial and Gaussian using sklearn

- 6 Decision Trees – ID3, C4.5 using sklearn 02 7 Support Vector Classification using sklearn 04 8 AND gate using Perceptron Learning (self-implementation) 04 9 Ex-OR Gate/any other problem using Backpropagation Neural Networks 04 (self-implementation)
- 10 K-means clustering using sklearn. 02

155