Institute:	Institute of Technology, School of Technology			
Name of Programme:	MTech CSE			
Course Code:	6CS205CC25			
Course Title:	Applied Mathematics for Computer Science			
Course Type:	Core			
Year of Introduction:	2025-26			

NIRMA UNIVERSITY

L	T	Practical Component				С
		LPW	PW	W	S	
3	0	0	-	-	-	3

đ.

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to:

- 1. explain the mathematical fundamentals related to sets, probability, statistics, (BL2) and mathematical optimization
- 2. apply the mathematical principles to solve a broad range of problems in (BL3) computer science
- (BL3) 3. make use of mathematical concepts as per the need of the application
- (BL5) 4. interpret the role of statistical tests for real-time applications.

Unit	Contents			
Unit-I	Probability: Independence, Bayes Theorem, Discrete& Continuous			
	Random Variables, Probability Mass and Density Functions,			
	Cumulative Distribution Functions, Mean and Variance of a Random Variable,			
	Probability Distributions: Discrete & Continuous Uniform			
	Distribution, Binomial Distribution, Geometric and Negative Binomial			
	Distributions, Hypergeometric Distributions, Poisson Distributions,			
	Normal Distribution, Normal Approximation to the Binomial and			
	Poisson Distributions, Exponential Distributions, Erlang and Gamma			
	Distributions, Lognormal Distribution, Two or more Random			
	Variables, Covariance and Correlation, Multinomial and Bivariate			
TT	Normal Distributions, Hypothesis Testing	10		
Unit-II	Advanced Statistics: Covariance and correlation, Confidence	10		
	intervals, Correlation functions, Random walks, Markov chains,			
	Hidden Markov Models, Statistical inference, Applications in Machine Learning, Gaussian Mixture Models			
Unit-III	Optimization: Basic Concepts, Linear Programming, Duality,	10		
Omt-m	Constrained and unconstrained optimization, gradient decent and non-	10		
	gradient techniques, Introduction to least squares optimization,			
	optimization in Practice			
Unit-IV	Advanced topics: Nonlinear dimensionality reduction methods, PCA	10		
	in high dimensions and random matrix theory (Marcenko-Pastur),			

Linear Discriminant Analysis, Matrix Factorization, Non-Negative Matrix Factorization, Proof Techniques, Random Graphs.

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Douglas C. Montgomery, George C. Runger, Applied Probability and Statistics for Engineers, Wiley
- 2. M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis, Cambridge University Press
- 3. Sheldon Ross, A first course in Probability, Pearson
- 4. Cathy O'Neil and Rachel Schutt, Doing Data Science, O'Reilly Media
- 5. Avrim Blum, John Hopcroft, and Ravindran Kannan, Foundations of Data Science, ebook, Cornell University
- 6. Afonso S. Bandeira, Ten Lectures and Forty-Two Open Problems in the Mathematics of Data Science, e-book, MIT OCW
- 7. Jeff M. Phillips, Mathematical Foundations for Data Analysis, e-book, University of Utah
- 8. O. Paneerselvam, Operational Research, Prentice Hall.

83