NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology	
Name of Programme:	MTech CSE	
Course Code:	6CS262ME22	
Course Title:	Wireless Networks	
Course Type:	Department Elective-I	
Year of Introduction:	2022-23	

\mathbf{L}	T	Practi	lent	C		
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to:

- 1. explain the fundamental principles and architectures of various mobile (BL2) communication technologies
- (BL4) 2. analyse the performance of different medium access techniques
- 3. evaluate the challenges and opportunities presented by emerging mobile (BL5) communication technologies
- 4. design basic mobile communication network scenarios to investigate the impact (BL6) of network parameters.

Unit	Contents	Teaching Hours
Unit-I	Introduction to Wireless Networks: Growth of mobile communications, Mobile Communications Fundamentals and its Evolution, Mobile data, Wi-Fi, Bluetooth, Overview of 1G and 2G	(Total 45) 04
Unit-II	Third-Generation (3G) Overview: Universal Mobile Telecommunications Service (UMTS), UMTS Services, The UMTS Air Interface, Overview of 3GPP Releases Network Architectures, Overview of CDMA2000, TD-CDMA, TD-SCDMA	05
Unit-III	Universal Mobile Telecommunications Service (UMTS): UMTS Basics, The WCDMA Air Interface, The UTRAN Architecture, Establishment of a UMTS Voice Call, UMTS Packet Data, High-Speed Packet Data, Handover, HSPA Connection Establishment	08
Unit-IV	CDMA2000: Radio and Network Components, Network Structure, Packet-Data Transport Process Flow, Radio Network, EVDO	03
Unit-V	TD-SDMA and TD-CDMA: Generic TD-SDMA Architecture, Core Network, Radio Network, Interference Mitigation Techniques, RAN Traffic Planning, Handover, Generic TD-CDMA Architecture, Core Network, Radio Network, Interference Mitigation Techniques, RAN Traffic Planning, Handover	05
Unit-VI	Long-Term Evolution (LTE): LTE Ecosystem, Standards, Radio Spectrum, LTE Architecture, User Equipment, Enhanced Node B, Core Network, Radio Channel Components, TD-LTE, Multiple Input	06
	Multiple Output (MIMO), LTE Scheduler, Carrier Aggregation, Cell Search, Cell Re-selection, Attach and Default Bearer Activation,	Rowlin

Handover, Self-Organizing Networks (SONs), Relay Cells, Heterogeneous Network (HetNET), Remote Radio Heads (RRH), VoLTE, LTE Advanced

- Unit- VII Fifth-Generation (5G): 5G Goals, Performance Requirements, Next Generation Mobile Networks (NGMN) and 3GPP Use case families, Building blocks of 5G: New Radio (NR) Interface Millimetre Wave Spectrum, Massive MIMO, Flexible OFDM Numerologies, Multi-RAT Connectivity, Advance Channel Coding, Network Features Cloud RAN, 5G Core, Service Based Architecture, RAN Architecture Optimization, Multi-access Edge Computing (MEC), Network Slicing, Virtualization and Automation Technologies
- Unit-VIII Introduction to Sixth-Generation (6G): Outlook of 6G, Computational Holographic Radio and Enabling Technologies for 6G, Air-interfaces for ultra-low power communications, Semantic Plane Filtering and Control, AI-assisted PHY technologies for 6G, Mobility-Enhanced Edge inTelligence (MEET) for 6G
- Unit- IX Wi-Fi: 802.11 Standards, WiFi Protocols, Frequency Allocation, Modulation and Coding Schemes, Network Architecture, Security, 802.11 Services, Hot Spots, Virtual Private Networks (VPN), Mobile VPN, VPN Types, Wi-Fi Integration with 3G/4G.

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Clint Smith and Daniel Collins, Wireless Networks, McGraw Hill
- 2. Nishith Tripathi and Jeffrey Reed, 5G Cellular Communications: Journey and Destination, A Multimedia, Rohde & Schwarz
- 3. Kaveh Pahlavan and Prashant Krishnamurthy, Principles of Wireless Networks: A Unified Approach, Prentice Hall
- 4. William Stallings, Wireless Communications and Networks, Pearson
- 5. 6G Networks: http://www.6gsummit.com/program/the-1st-6g-wireless-summit/

Suggested List of Experiments:

Sr.	Name of Experiments/Exercises		
No.			
1	Familiarisation with a simulator like NS-3 for modeling and analyzing networks	04	
2	Implement a basic CDMA system in software (MATLAB/Python) to grasp the spread spectrum	04	
3	Analyse call setup signaling in UMTS using a protocol analyzer to illustrate 3G core network procedures	02	
4	Set up a basic LTE network in a simulator with a focus on key LTE features like OFDMA and scheduling	04	
5	Simulate a MIMO channel in software (MATLAB/Python) to understand spatial multiplexing	04	

92

05

03

06

Analyze LTE handover procedures in a simulator with device mobility 02
Simulate a 5G NR network with different numerologies 04
Configure a Wi-Fi network and implement security protocols (WPA2/3) 02
Analyse network traffic traces (Wireshark) to understand protocol behaviour 02
Experiment with different Wi-Fi channels and observe the impact of 02 interference on network performance.

a

93