Institute:	Institute of Technology, School of Technology			
Name of Programme:	MTech CSE, MTech CSE (Cyber Security)			
Course Code:	6CS264ME22			
Course Title:	Internet of Things			
Course Type:	Department Elective-III			
Year of Introduction:	2022-23			

NIRMA UNIVERSITY

L	T	Practi	C			
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to:

- 1. explain the fundamental concepts, architectures, and functional stacks of IoT (BL2)
- 2. analyse and implement communication protocols and access technologies (BL4)
- 3. analyse and compare different IoT network and application layer protocols to (BL4) determine their suitability for various IoT applications
- 4. design and implement an IoT-based system using machine learning, big data (BL6) analytics, and lightweight web services to address real-world challenges.

Unit	Contents	Teaching Hours
		(Total 45)
Unit-I	Introduction to IoT : Introduction, applications, need and scope of IoT, Various IoT architectures, functional stack, Processors and Operating Systems for resource-constrained devices	05
Unit-II	IoT HW and Access Technologies: Sensors and actuators, smart objects, Connecting objects, protocols and access technologies like IEEE802.15.4, LFNBPLC, LoRaWAN, WirelessHART, LTE-M, BLE, NB-IoT, Sigfox, White-Fi and HaLow	12
Unit-III	IoT network layer : IPv6: IPv6 structure, addressing, routing, interconnecting issues, 6LoWPAN: forwarding, addressing, header compression, neighbor discovery, Routing in LLN, RPL	07
Unit-IV	Application layer protocols: CoAP, MQTT, AMQP, XMPP, Integrating Internet Services with Interoperable data encoding with XML, JSON and CBOR, Sensor data models and representation, The Sensor Mark-up Language (SENML), lightweight web services for IoT	08
Unit-V	Data analytics for IoT: machine learning, big data analytics tools and technology like NoSQL, Hadoop	05
Unit-VI	Securing IoT: Challenges in IoT security, provisions for securing IoT network	04
Unit-VII	Case studies on IoT applications: Connected Vehicles, Autonomous Vehicles, Industrial Applications of IoT.	03

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

129 D:\Divy_Academics\Divy_Academics - 1\Divy-Academics\NOTIFICATIONS\1 - ACAD-COUN\54-Noti - AC - 130325\- Noti - - 3(D) - 3_D-MT_CSE(CSE) - 1_IV (encl).docx

Suggested Readings/ References:

- 1. David Hanes, G. Salgueiro, IoT Fundamentals Networking Technologies, Protocols, and Use Cases for Internet of Things, Cisco Press
- 2. Jean-Philippe Vasseur, Adam Dunkels, Interconnecting Smart Objects with IP: The Next Internet, Morgan Kaufmann
- 3. Pethuru Raj, Anupama Raman, The Internet of Things Enabling Technologies, Platforms and Use Cases, CRC Press
- 4. Robert Stackowiak, Art Licht, VenuMantha and Louis Nagode, Big Data and The Internet of Things, Apress
- 5. Peter Waher, Learning Internet of Things, Packt Publishing Ltd
- 6. Daniel Kellmereit, Daniel Obodovski, The Silent Intelligence: The Internet of Things, DND Ventures
- 7. Olivier Hersent, David Boswarthick, Omar Elloumi, The Internet of Things: Key Applications and Protocols, Wiley Publications.

Suggested List of Experiments:

Sr.	Name of Experiments/Exercises	
No.	-	
1	Building basic electronic circuits using various components and exploring	2
	ESP8266, ESP32 and Arduino IDE	
2	Programming with ESP8266/ESP32 boards	
3	Access sensors and control actuator using HTTP protocol	
4	Reverse parking sensor for car	2
5	Integrating Bluetooth, RFID, LoRa transceiver with different IoT platforms	4
6	Upload sensor data to cloud platform	2
7	Publish and Subscribe with MQTT	4
8	Application development using COAP	4
9	Interfacing IoT boards with platforms like IFTTT	4
10	Simulate IoT network on Cooja Simulator focusing on 6LowPAN.	4