NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology				
Name of Programme:	MTech CSE (Data Science)				
Course Code:	6CS268ME25				
Course Title:	Soft Computing				
Course Type:	Department Elective-III				
Year of Introduction:	2025-26				

L	T	Practio	cal Co	mpon	ent	C
		LPW	PW	W	S	
3	0	2	-	-	-	4

(BL2)

(BL4)

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to:

- 1. define different soft computing techniques
- 2. apply soft computing to solve problems for various application domains (BL3)
- 3. analyse different soft computing techniques
- 4. solve single-objective and multi-objective optimization problems using soft (BL6) computing and evolutionary techniques.

Unit	Contents	Teaching Hours (Total 45)
Unit-I	Introduction to Soft Computing: Introduction to computing systems, State space search, Heuristic search techniques, Characteristics of soft computing and applications, Heuristic search techniques vs Soft computing techniques	06
Unit-II	Fuzzy logic: Introduction to Fuzzy logic, Fuzzy sets and membership functions, Operations on Fuzzy sets, Fuzzy relations, rules, propositions, implications and inferences, Defuzzification techniques, Applications of Fuzzy logic	06
Unit-III	Introduction to Evolutionary Computation: Generic Evolutionary Algorithm, Representation, Initial Population, Fitness Function, Selection, Reproduction Operators, Stopping Conditions, Evolutionary Computation versus Classical Optimization	08
Unit-IV	Genetic Algorithms & Differential Evolution: Crossover, Mutation, Control parameters, Genetic Algorithm Variants, Basic Differential Evolution, DE/x/y/z, Applications	06
Unit-V	Swarm Intelligence (SI): Introduction to Swarm Intelligence, Basic Particle Swarm Optimization, Social Network Structures, Basic Variations, Basic PSO Parameters, Ant Colony Optimization Metaheuristic, Cemetery Organization, Applications	15
Unit-VI	Multi-objective Optimization Problem Solving: Concept of multi- objective optimization problems (MOOPs) and issues of solving them, Multi-Objective Evolutionary Algorithm (MOEA) and applications	04

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Andries P. Engelbrecht, Computational Intelligence: An Introduction, Wiley
- 2. F. Martin, Mc neill, and Ellen Thro, Fuzzy Logic: A Pratical approach, AP Professional
- 3. Timothy J. Ross, Fuzzy Logic with Engineering Applications, Willey
- 4. Nikola K. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering, MIT Press
- 5. Ahmed M. Ibrahim, Fuzzy Logic for Embedded Systems Applications, Elsevier Press
- 6. Melanie Mitchell, An Introduction to Genetic Algorithms, MIT Press
- 7. David E. Goldberg, Genetic Algorithms In Search, Optimization And Machine Learning, Pearson
- 8. Randy L. Haupt and sue Ellen Haupt, Practical Genetic Algorithms, John Willey & Sons
- 9. S. Rajasekaran, and G. A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logis and Genetic Algorithms: Synthesis, and Applications, Prentice Hall
- 10. J.-S. R. Jang, C.-T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing, PHI Learning
- 11. Simon Haykin, Neural Networks and Learning Machines, PHI Learning.

Suggested List of Experiments:

00		
Sr.	Name of Experiments/Exercises	Hours
No.		
1	Study different libraries for Evolutionary Algorithms	02
2	Study different libraries for Swarm Intelligence	02
3	Implement Genetic Algorithm for Symmetric Travelling Salesman	04
	Problem	
4	Implement Genetic Algorithm for Clustering Problem	02
5	Implement Differential Evolution for Symmetric Travelling Salesman	02
	Problem	
6	Implement Differential Evolution for Clustering Problem	02
7	Implement Particle Swarm Optimization for Clustering Problem	04
8	Implement Ant Colony Optimization for Symmetric Travelling Salesman	04
	Problem	
9	Implement Ant Algorithm for Clustering Problem	04
10	Implement a Genetic Algorithm for any Multi-objective problem.	04