NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology
Name of Programme:	MTech CSE (Data Science) / MTech CSE
Course Code:	6CS272ME25
Course Title:	Deep Learning Applications
Course Type:	Core / Department Elective-II
Year of Introduction:	2025-26

L	T	Practical Component				
		LPW	PW	W	S	
2	0	2	-	-	-	3

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to -

- 1. identify the strengths and weaknesses of the deep network (BL3)
- 2. analyse the suitability of different deep networks for problems in various (BL4) domains
- 3. interpret the functioning and math behind the deep learning architectures (BL5)
- 4. design and implement deep networks for solving problems pertaining to (BL6) computer science and interdisciplinary research.

Unit	Contents	Teaching Hours (Total 30)	
Unit-I	Fundamentals: Introduction to AI, Machine Learning and Deep Learning, basics of supervised and unsupervised learning, gradient descent, linear regression, Artificial Neural Networks, forward and backpropagation	(10tal 30) 05	
Unit-II	Convolutional Neural Networks: Fundamentals of CNN, model training and inferencing for classification and regression, hyper-parameters tuning, state-of-the-art CNN architectures, Transfer Learning,	10	
Unit-III	Sequence Learning: Recurrent Neural Networks (RNN), Long short-term memory (LSTM), Gated Recurrent Unit (GRU), Attention and Transformer Networks, Attention Mechanism for Images	06	
Unit-IV	Deep Unsupervised Learning: Auto-encoders, Generative Adversarial Networks (GAN)	03	
Unit-V	Reinforcement learning: Markovian Decision Process, Basic Decision problem, Bellman Equation, Q-learning, Deep reinforcement learning.	03	
Unit-VI	Case Studies: Case studies related to image processing, computer vision, video processing, object detection and tracking	03	

D:\Divy_Academics\Divy_Academics - I\Divy-Academics\NOTIFICATIONS\1 - ACAD-COUN\54-Noti - AC - 130325\- Noti - 3(D) - 4_IT-MT_CSE(DS) - I_IV (encl).docx

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Zhang, Aston, Dive into deep learning. Cambridge University Press
- 2. Glassner, Andrew. Deep learning: a visual approach. No Starch Press
- 3. Prince, Simon JD. Understanding Deep Learning. MIT Press
- 4. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press
- 5. Adam Gibson, Josh Patterson, Deep Learning, O'Reilly
- 6. Ronald T. Kneusel, Practical Deep Learning, No starch press.

Suggested List of Experiments:

Sr.	Name of Experiments/Exercises	
No.		
1	Analysis of Titanic – Machine Learning from Disaster	02
2	Basics of Tensorflow and Keras	02
3	Conventional Feed Forward Neural Network on MNIST. Write code using (a) Sequential Class (b)Model Class API	02
4	Kaggle: Digit Recognizer (Digit Recognizer Kaggle)	02
5	Kaggle: CIFAR-10 - Object Recognition in Images Use transfer learning.	04
6	Image Segmentation & Detection Using Deep Networks	04
7 .	Auto Encoders for Dimensionality Reduction	02
8	Build a language model using RNN. Write functions to sample novel sentences and find the probability of the input sentence. Also, use Recurrent Neural Network for Sentiment Analysis.	04
9	Recurrent Neural Network for Image Captioning	04
10	GAN for MNIST-like image generation.	04

Hours