NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	MTech CSE, MTech CSE (Data Science)
Course Code:	6CS277ME25
Course Title:	Embedded Systems
Course Type:	Department Elective-I
Year of Introduction:	2025-26

L	T	Practio	cal Co	mpon	ponent			
		LPW	PW	W	S			
3	0	2	-	-	-	4		

	earning Outcomes (CLO): of the course, the students will be able to –	
1. explain the basics of embedded systems		
2. apply the concepts of modeling using various techniques		
	the performance of various embedded systems	(BL4)
4. evaluate the implemented embedded systems.		
Unit	Contents	Teaching
		Hours (Total 45)
Unit-I	Introduction to Embedded Systems: Importance, real-time embedded	08
	systems, components of embedded systems, characteristics and working	
	of embedded systems, requirements and feasibility analysis of	
	embedded systems, cost estimation, usability, examples of embedded	¥
** *. **	systems	
Unit-II	Specification and Modelling: Models of computation like sequential	10
	models, functional models, concurrent models, Finite State Machines, Mealy State Machines and Moore State Machines, Deterministic FSM	
	and Non-Deterministic FSM, Data Flow, Petri Nets, State charts,	
	Synchronous Languages (Esterel, Scade), UML	
Unit-III	Architecture and Performance Analysis: Architecture, Coordination,	08
	Communication, Prediction of execution times, introduction to	00
	microprocessors and microcontrollers, Scheduling in real-time systems,	
	Real-time operating systems, Middleware	
Unit-IV	Implementation: Embedded product development life cycle, Task	10
	level concurrency management, Hardware/software partitioning,	
	Compilers for embedded systems, Design flows and tools	
Unit-V	Validation: Simulation, Testing and Formal Verification, Unit testing,	09
	integration testing, system testing, acceptance testing, performance	
	testing.	

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

C

Suggested Readings/ References:

- 1. P. Marwedel, Embedded System Design. Springer Verlag
- 2. W. Wolf, Computers as components: principles of embedded computing system design. Morgan Kaufmann
- 3. G.C. Buttazzo, Hard real-time computing systems: predictable scheduling algorithms and applications. Kluwer Academic Publishers
- 4. K.V.K. Prasad, Embedded / Real-Time Systems: Concepts, Design and Programming Black Book, Dreamtech
- 5. James Peckol, Embedded Systems: A contemporary development tool, Wiley
- 6. Elicia White, Making Embedded Systems: Design Patterns for Great Software, O'Reilly.

Suggested List of Experiments:

Sr.	Name of Experiments/Exercises	Hours
No.		
1	Study of ARM Processor	02
	Understand the memory mapping of IO and Peripherals	
	List the peripherals present in the processor	
	Explain how to use an IO pin, related SFRs and instructions	
	Explain how to use timer, UART and related SFR and instruction set	
2	Develop an assembly level code for single precision (32 bit) arithmetic	04
	function to perform addition, subtraction, multiplication and division	
3	Develop an assembly level code for 32-bit or 64-bit delay routine.	04
	Calculate number of clocks taken for executing a routine and adjust the	
	delay value as desired	
4	Develop a UML specification and modeling-based project for a specified	10
	case study. Some examples are - elevator, washing machine, air	
_	conditioner, smart television, etc.	
5	Perform the modeling using Petrinets	06
6	Develop an embedded system using concurrency, data flow and required	04
	hardware/software.	

۲