NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology		
Name of Programme:	MTech CSE (Data Science)		
Course Code:	6CS302CC25		
Course Title:	Data-Science System Design		
Course Type:	Core		
Year of Introduction:	2025-26		

L	Т	Practical Component				
		LPW	PW	W	S	
2	0	2	-	-	-	3

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to:

- 1. identify the appropriate infrastructure needs for the ML system (BL3)
- 2. apply suitable tools to implement, test and deploy the applications (BL3)
- 3. analyse data-science applications with respect to fault-tolerance and scalability (BL4)
- 4. design the high-level architecture of the ML system. (BL6)

Unit	Contents	Teaching Hours
		(Total 30)
Unit-I	Introduction to Data-Science (DS) Systems Design: Requirements	03
	for DS systems, Framing DS Problems, ML Project Lifecycle, DS	
(j)	System Architecture	
Unit-II	Network and Distributed Systems: IP and Addressing, TCP/UDP,	05
	HTTP, Concurrency and Synchronization, Scheduling and Logging,	
	Rate Limiter, Leader Election, Clustering, Availability, Scalability	
Unit-III	Communication Approaches: REST API and API Gateway,	05
	GraphQL, gRPC, Websockets, Long-Polling, Server Sent Events,	
	Message Queues, Message Brokers, Publish and Subscribe,	
	Distributed Queues	
Unit-IV	Data Processing and Storage: SQL and NoSQL Databases, Data	06
	Models and Data Flow, Indexing, Searching, Normalization,	
	Replication and Sharding, Consistency models, Distributed	
	Transactions, Data Preprocessing, Data Pipelines, Scaling Data	¢
	Storage and Data Processing, CDN, Blob Storage and S3	
Unit-V	Performance Aspects and Resiliency: Load Balancing, Caching,	04
	Hashing, Service Discovery, Circuit Breakers, Disaster Recovery,	
	Testing and Monitoring, Securing the System	

Unit-VI Architecture, Infrastructure and Case Studies: Microservices Architecture, Cloud Infrastructure, Serverless Computing, Virtual Machines, Containers and Orchestration Tools, Responsible ML Engineering, Case Studies: Recommendation Engine, Ad Click Prediction, Visual Search, Twitter Feed, Food Delivery, Search Ranking.

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Chip Huyen, Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications, O'Reilly
- 2. Martin Kleppmann, Designing Data-Intensive Applications, O'Reilly
- 3. Roberto Vitillo, Understanding Distributed Systems: What every developer should know about large distributed applications, Shroff Publishers
- 4. Emmanuel Ameisen, Building Machine Learning Powered Applications: Going from Idea to Product, O'Reilly
- 5. Machine Learning in Production: From Models to Products, Christian Kästner, CMU Press
- 6. Valerii Babushkin and Arseny Kravchenko, Machine Learning System Design, Manning Publications.

Suggested List of Experiments:

Sr.	Name of Experiments/Exercises			
No.				
1	Design REST API based server with CRUD operations			
2	Design API based server with GraphQL			
3	Implement a producer-consumer problem using a message queue	02		
	(RabbitMQ, Kafka)			
4	Implement horizontal sharding for a basic database application	04		
5	Set up master-slave replication between multiple databases	04		
6	Design and implement a data pipeline to collect and preprocess raw data			
	from multiple sources (CSV files, APIs, or databases).			
7	Build a simple LRU (Least Recently Used) cache server			
8	Implement a simple round-robin load balancer demonstrating how traffic			
	is distributed across multiple servers			
9	Build a fault-tolerant system by introducing retries and circuit breakers in	02		
	an API based application.			
10	Create a REST API to deploy a machine learning model using Flask or	04		
	FastAPI.			

160

D:\Divy_Academics\Divy_Academics - I\Divy-Academics\NOTIFICATIONS\1 - ACAD-COUN\54-Noti - AC - 130325\- Noti - 3(D) - 4_IT-MT_0 (encl).docx