Institute:	Institute of Technology, School of Technology MTech CSE, MTech CSE (Data Science)					
Name of Programme:						
Course Code:	6CS361ME25					
Course Title:	Natural Language Computing					
Course Type:	Department Elective-I					
Year of Introduction:	2025-26					

NIRMA UNIVERSITY

L	T	Practical Component				
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, students will be able to -

- 1. demonstrate foundational concepts in natural language processing and neural (BL2) network models
- 2. analyse and implement vector space models for word representation (BL4)
- 3. develop recurrent neural networks and attention mechanisms for advanced (BL6 NLP tasks
- 4. adapt transformer models for diverse NLP applications, addressing ethical and (BL6) interpretability aspects and societal impacts.

Unit	Contents	Teaching Hours (Total 45)
Unit-I	Introduction to NLC: Overview of Natural Language Processing, Text Pre-processing, N-gram Models, NLP and Neural Networks, Biological and Artificial Neural Networks, Perceptron Learning, Linear Separability, Feed Forward Neural Networks, Gradient Descent and Backpropagation	06
Unit-II	Vector Space Models: Word2Vec – Skiagram and Continuous Bag of Words Model, Glove, Doc2Vec	04
Unit-III	Recurrent Neural Networks and Attention Mechanisms: Simple RNN, RNN Architectures, GRU, LSTM, Bi-Directional and Deep RNNs, Seq2Seq Models and Machine Translation, Simple Dot-product Attention, Multiplicative and Additive Attention, Language Modelling	07
Unit-IV	Transformer Models: Self-Attention, Encoder Transformer, Decoder Transformer, Encoder-Decoder Transformer, Pretraining, Post-training (Prompting, RLHF, SFT, DPO), Adding Knowledge to Language Models, BERT, GPT, T5	12
Unit-V	Interpretability and Fine-tuning: Model Interpretability, Analysis and Explanation, Social and Ethical Considerations, Scaling Language Models, Model Quantization, Model Distillation, PEFT.	09
Unit-VI	Applications of NLC: Sequence Classification, Token Classification, Summarization, Question-Answering, Coreference Resolution, Code Generation, Low-resource Machine Translation.	07
		0

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. J Dan Jurafsky and James H. Martin, Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition, Prentice Hall
- 2. Jacob Eisenstein, Introduction to Natural Language Processing, The MIT Press
- 3. Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, The MIT Press
- 4. Lewis Tunstall, Leandro von Werra, and Thomas Wolf, Natural Language Processing with Transformers, O'Reilly.

Suggested List of Experiments:

Sr. No.	Name of Experiments/Exercises	Hours
1	Introduction to text processing libraries	02
2	Introduction to PyTorch for NLP	02
3	Implement Word2Vec models	04
4	Implement sequence models for (i) Sequence Classification (ii) Named-	06
	Entity Recognition (iii) Machine Translation	
5	Enhance the Seq2Seq model using different attention mechanisms	02
6	Implement transformer model for (i) sequence classification (ii) machine	04
	translation	
7	Fine-tune pre-trained transformer models such as BERT, GPT-2, or T5 on	02
	a specific NLP task	
8	Implement SHAP and LIME for interpretability of NLP models using	02
	techniques	
9	Build a conversational agent using LangChain	04
10	Incorporate RAG/LoRA/RLHF in a conversational agent.	02