NIRMA UNIVERSITY				
Institute: Institute of Technology, School of Technology				
Name of Programme:	MTech CSE, MTech CSE (Cyber Security),			
	MTech CSE (Data Science)			
Course Code:	6CS362ME25			
Course Title:	Information Retrieval Systems			
Course Type:	Department Elective-I			
Year of Introduction:	2025-26			

L	Τ	Practic	Practical Component			
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

ø

At the end of the course, the students will be able to:

- 1. explain concepts, algorithms, data, and file structures to design an IR systems (BL2)
- 2. apply methodology for the design and evaluation of textual IR systems (BL3)
- 3. compare major types of IR systems based on theoretical foundations (BL4) (BL6)
- 4. develop multimedia IR systems using relevant algorithms.

Unit	Contents	ł	eaching Hours otal 45)
Unit-I	Introduction to IRS: Motivation and Applications of Information Retrieval (IR) systems, Architecture of an IR system, overview of search engine functionality and types of search queries		04
Unit-II	Document Representation and Indexing: Text Processing (Tokenization, Stop Word Removal, Stemming), Building an inverted index, storage and compression, Zipf's Law, Information visualization using word cloud and histograms		06
Unit-III	Retrieval Models: Boolean, TF, TF-IDF models. Vector space formation of documents. Similarity measures and ranking (Euclidean, Cosine and Jaccard), Relevance Feedback (Rocchio method), Concept of Latent Semantic Indexing using Singular Value Decomposition, Evaluating performance of an IR system. Language Models (Basics of Bayes Theorem and Markov Models, n gram modeling)		10
Unit-IV	Web Information Retrieval: Link Analysis, Page Ranking, HITS. Introduction to Semantic Web.		05
Unit-V	Machine Learning for Information Retrieval: Naive Bayesian Classification for spam filtering and text classification. K nearest neighbours. Word2Vec and neural word embeddings. GloVe. Introduction to Recurrent Neural Networks. Clustering terms using documents (partitioning and hierarchical clustering).		12
Unit-VI	Advanced Topics: Summarization, Personalization (Recommender Systems using content based and collaborative filtering), Question Answering, Cross Language and Multimedia Information Retrieval, Retrieval Augmented Generation (RAG).		08 08
		Δ	111

NIDMA UNIVEDSITY

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge UP
- 2. R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval, Addison-Wesley
- 3. B. Croft, D. Metzler, T. Strohman, Information Retrieval in Practice, Pearson Education
- 4. D.A. Grossman, O. Frieder, Information Retrieval: Algorithms and Heuristics, Springer
- 5. W.B. Croft, J. Lafferty, Language Modeling for Information Retrieval, Springer

Suggested List of Experiments:

Sr.	Name of Experiments/Exercises	Hours
No.		
1	Getting started with Kaggle and implementing MNIST Digits classification	02
0		
2	Text Preprocessing using NLTK	02
3	Vector Space Model using CountVectorizer and TfIdf Vectorizer in Scikit-	02
	learn	
4	Implementation of distance and similarity measures	02
5	Performance Evaluation of IR systems	02
6	Language Models using RNN and virtual labs on Natural Language	04
	Processing	
7	Text Classification using naive Bayesian approach	04
8	Implementation of recommender systems	04
9	Multimedia Information Retrieval - Person Recognition using	04
	audio/video/image	
10	Mini search engine using GUI.	04