NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology
Name of Programme:	MTech CSE, MTech CSE (Data Science)
Course Code:	6CS373ME25
Course Title:	Reinforcement Learning
Course Type:	Department Elective-I
Year of Introduction:	2025-26

L	T	Practical Component					
		LPW	PW	W	S		
3	0	2	-	-	-	4	

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to:

1.	summarise	the	fundamental	concepts	and	principles	of	reinforcement	(BL2)
	learning								

- (BL3) 2. make use of tabular methods to solve classical control problems (BL3)
- 3. choose suitable approximation solutions of reinforcement learning
- (BL5) 4. recommend suitable techniques and applications of reinforcement learning.

Unit	Contents	Teaching Hours (Total 45)
Unit-I	Foundations: Introduction and Basics of RL, Defining RL Framework, Markov decision process (MDP), state and action value functions, Bellman equations, optimality of value functions and policies, Bellman optimality equations	07
Unit-II	Prediction and Control by Dynamic Programming: Overview of dynamic programming for MDP, definition, and formulation of planning in MDPs, the principle of optimality, iterative policy evaluation, policy iteration, value iteration	07
Unit-III	Monte Carlo Methods for Model Free Prediction and Control: Overview of Monte Carlo methods for model-free RL, Monte Carlo control, On policy and off-policy learning, Importance sampling, Incremental Monte Carlo Methods for Model Free Prediction	07
Unit-IV	TD Methods: Overview TD (0), TD (1), and TD(λ), k-step estimators, unified view of DP, MC, and TD evaluation methods, TD Control methods - SARSA, Q-Learning and their variants	07
Unit-V	Function Approximation Methods: Overview of function approximation methods, gradient descent from Machine Learning, Gradient MC and Semi-gradient TD (0) algorithms, Eligibility trace for function approximation, Control with function approximation, least squares, Experience replays in deep Q-Networks, Actor-Critic models	10
		0

Unit-VI **Recent Advances and Applications:** Meta-learning, Multi-Agent (Reinforcement Learning, Partially Observable Markov Decision Process, Applying RL for real-world problems.

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Richard S. Sutton and Andrew G. Barto, Reinforcement learning: An introduction, MIT Press
- 2. Wiering, Marco, and Martijn Van Otterlo, Reinforcement Learning-Adaptation, learning, and optimization, Springer
- 3. Dimitri P. Bertsekas, Reinforcement Learning and Optimal Control, Athena Scientific.
- 4. Warren B. Powell, Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions, Wiley
- 5. Csaba Szepesvári, Algorithms for Reinforcement Learning, Springer.

Suggested List of Experiments:

Sr. No.	Name of Experiments/Exercises	Hours
1	Write a program to develop an agent that takes random actions in a grid	04
	world environment	
2	Write a program that constructs an agent with Q-learning algorithm	02
3	Create a program that trains an agent using SARSA and Q-learning	02
4	Write a program to create a multi-armed bandit problem with multiple	04
	arms or actions, with different exploration strategies as epsilon-greedy and UCB	
5	Write a program to design a Markov Decision Process (MDP) and employ	02
	the value iteration algorithm to calculate optimal values	
6	Write a program to design a Markov Decision Process (MDP) and employ	02
	the policy iteration algorithm to calculate optimal policy	
7	Write a program to simulate the CartPole environment in OpenAI Gym	04
	and implement a Deep Q Network	
8	Write a program to design an environment with a continuous action space,	02
	and implement an actor-critic architecture with a neural network	
9	Develop a DQN-based reinforcement learning model to tackle a real-	04
	world application	
10	Develop a A2C-based reinforcement learning model to tackle a real-	04

Develop a A2C-based reinforcement learning model to tackle a realworld application.