NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology	
Name of Programme:	MTech CSE, MTech CSE (Data Science)	
Course Code:	6CS373ME25	
Course Title:	Reinforcement Learning	
Course Type:	Department Elective-I	
Year of Introduction:	2025-26	

L	T	Practical Component				C
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):
At the end of the course, the students will be able to:

1.	summarise the fundamental concepts and principles of reinforcement	(BL2)
	learning	
2.	make use of tabular methods to solve classical control problems	(BL3)
3.	choose suitable approximation solutions of reinforcement learning	(BL3)
4.	recommend suitable techniques and applications of reinforcement learning.	(BL5)

Unit	Contents	Teaching Hours (Total 45)
Unit-I	Foundations: Introduction and Basics of RL, Defining RL Framework, Markov decision process (MDP), state and action value functions, Bellman equations, optimality of value functions and policies, Bellman optimality equations	07
Unit-II	Prediction and Control by Dynamic Programming: Overview of dynamic programming for MDP, definition, and formulation of planning in MDPs, the principle of optimality, iterative policy evaluation, policy iteration, value iteration	07
Unit-III	Monte Carlo Methods for Model Free Prediction and Control: Overview of Monte Carlo methods for model-free RL, Monte Carlo control, On policy and off-policy learning, Importance sampling, Incremental Monte Carlo Methods for Model Free Prediction	07
Unit-IV	TD Methods: Overview TD (0), TD (1), and TD(λ), k-step estimators, unified view of DP, MC, and TD evaluation methods, TD Control methods - SARSA, Q-Learning and their variants	07
Unit-V	Function Approximation Methods: Overview of function approximation methods, gradient descent from Machine Learning, Gradient MC and Semi-gradient TD (0) algorithms, Eligibility trace for function approximation, Control with function approximation, least squares, Experience replays in deep Q-Networks, Actor-Critic models	10
Unit-VI	Recent Advances and Applications: Meta-learning, Multi-Agent Reinforcement Learning, Partially Observable Markov Decision Process, Applying RL for real-world problems.	07

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Richard S. Sutton and Andrew G. Barto, Reinforcement learning: An introduction, MIT Press
- 2. Wiering, Marco, and Martijn Van Otterlo, Reinforcement Learning-Adaptation, learning, and optimization, Springer
- 3. Dimitri P. Bertsekas, Reinforcement Learning and Optimal Control, Athena Scientific.
- 4. Warren B. Powell, Reinforcement Learning and Stochastic Optimization: A Unified Framework for Sequential Decisions, Wiley
- 5. Csaba Szepesvári, Algorithms for Reinforcement Learning, Springer.

Suggested List of Experiments:

Suggested List of Experiments.				
Sr. No.	Name of Experiments/Exercises	Hours		
1	Write a program to develop an agent that takes random actions in a grid world environment	04		
2	Write a program that constructs an agent with Q-learning algorithm	02		
3	Create a program that trains an agent using SARSA and Q-learning	02		
4	Write a program to create a multi-armed bandit problem with multiple arms or actions, with different exploration strategies as epsilon-greedy and UCB	04		
5	Write a program to design a Markov Decision Process (MDP) and employ the value iteration algorithm to calculate optimal values	02		
6	Write a program to design a Markov Decision Process (MDP) and employ the policy iteration algorithm to calculate optimal policy	02		
7	Write a program to simulate the CartPole environment in OpenAI Gym and implement a Deep Q Network	04		
8	Write a program to design an environment with a continuous action space, and implement an actor-critic architecture with a neural network	02		
9	Develop a DQN-based reinforcement learning model to tackle a real-world application	04		
10	Develop a A2C-based reinforcement learning model to tackle a real-world application.	04		