NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology
Name of Programme:	MTech CSE, MTech CSE (Data Science)
Course Code:	6CS376ME25
Course Title:	Explainable AI
Course Type:	Department Elective-II
Year of Introduction:	2025-26

L	T	Practical Component				
		LPW	PW	W	S	
2	0	2	-	-	-	3

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to -

- 1. demonstrate the concepts within Explainable AI and interpretable machine (BL2) learning
- 2. identify current techniques for generating explanations from black-box machine (BL3) learning methods
- 3. analyse current ethical, social, and legal challenges related to Explainable AI (BL4) skills and abilities
- 4. assess Explainable AI methods for the given applications.

Unit

Contents

Teaching Hours (Total 30)

06

04

05

(BL5)

Unit-I **Introduction**: Introduction to the multidisciplinary topics of Explainable AI (XAI), what is XAI, the importance of XAI, XAI-related terminologies

Taxonomy of XAI methods: Intrinsic vs post hoc, model-specific vs model-agnostic, and local vs global

Properties and Trade-off: properties of Explanation methods, treadoff between accuracy and explainability, human-friendly explanations

- Unit-II **Intrinsically explainable models**: Linear Regression, Logistic Regression, Generalized Linear Model (GLM), Generalized Additive Model (GAM), and Decision Tree.
- Unit-III XAI methods and its evaluations: Model-Agnostic Methods, Example-based methods, Global Model-Agnostic methods including Partial Dependence Plot (PDP), Conformal Prediction, Individual Conditional Expectation (ICE), Feature Importance, Saliency Maps, Local Interpretable Model-Agnostic Explanations (LIME), SHAP, Integrated Gradient (IG)
- Unit-IV **Visualization Techniques**: Activation Maps in CNNs, Attention mechanism in NLP, Visualizing decision boundaries and feature interactions.

186

Unit-V Fairness and Bias in AI: Understanding biases in data and models, Metrics for fairness evaluation, Techniques to mitigate bias in AI systems.

> Ethical Considerations: The impact of AI on society, Responsible AI practices and guidelines.

Unit-VI Explainability in Reinforcement Learning: Understanding policies learned by RL agents, Interpreting state-action trajectories and reward mechanisms.

> Applications of XAI: healthcare, finance, autonomous systems, and other domains.

> Futuristic approaches: The Future of Machine Learning models and its Interpretability.

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Molnar, Christoph, Interpretable Machine Learning, Leanpub
- 2. Denis Rothman, Hands-On Explainable AI (XAI) with Python, Packt Publishing
- 3. Michael Munn, David Pitman, Explainable AI for Practitioners, O'Reillyly
- 4. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer
- 5. Uday Kamath, John Liu, Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning, Springer.

Suggested List of Experiments:

Sr.	Name of Experiments/Exercises	Hours
No.		
1	Installing and understanding various packages of model interpretation	02
2	Interpreting tree models	04
3	Implementing the SHAP model for textual data and analyzing ALE, ICE,	04
	and PDP plots	
4	Implementing Grad-CAM model for image dataset	04
5	Implement LIME model for image dataset	02
6	Implement integrated gredients for a given image dataset	04
7	What-if-tool image smile detection and visualization	04
8	Implementation of XAI Chatbot	04
9	Generate an anchor explanation for ImageNet dataset	02
10	Cognitive XAI for IMDB dataset.	02

02