NIRMA UNIVERSITY

Institute of Technology, School of Technology		
M Tech CSE, MTech CSE (Cyber Security),		
MTech CSE (Data Science)		
6CS377ME25		
Distributed Data Analytics		
Department Elective-II		
2025-26		

L	T	Practical Component				
		LPW	PW	W	S	
2	0	2	-	-	-	3

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to:

- 1. demonstrate the implementation of scalable solutions for mining (BL2) massive datasets using Spark's MLlib and other core libraries
- 2. analyse the architectural components and distributed computing (BL3) paradigms of Apache Spark for efficient big data processing
- 3. experiment with querying, graphs, and streaming data in Spark (BL3)
- 4. evaluate the performance of Spark applications. (BL5)

Unit	Contents	Teaching Hours
	9	(Total 30)
Unit-I	Analyzing Big Data: Challenges of Data Science, Evolution of Big	06
	Data Processing (Hadoop vs. Spark), Introduction MapReduce	
	Programming, MapReduce Based Machine Learning, Introduction of	
	Apache Spark, The Spark Programming Model	
Unit-II	Spark Framework: Spark Ecosystem and Components, Advantages	06
	of Spark, Spark Driver, Executors, and Cluster Managers, Resilient	
	Distributed Dataset (RDD), Execution Flow (DAGs, Stages, and	
	Tasks), Cluster Deployment Modes, Writing Spark Application -	
	Spark Programming in Scala, Python, R, Java - Application Execution	
Unit-III	Spark Streaming, Spark SQL and GraphX: Overview – Errors and	06 "
	Recovery - Streaming Source - Streaming live data with spark, SQL	
	Context - Importing and Saving data - Data frames - using SQL -	
	GraphX overview - Creating Graph - Graph Algorithms	
Unit-IV	Classification, Regression, and Clustering with Spark MLLib:	06
	Linear support vector machines - Naive Bayes model- Decision Trees	
	- Least square regression- Decision trees for regression, Hierarchical	
	Clustering in a Euclidean and Non-Euclidean Space – The Algorithm	
	of Bradley, Fayyad, and Reina - A variant of K-means algorithm	

Unit-V Recent Trends in Big Data Analytics using Spark: 06
Recommendation Systems, Predictive Modelling, Geospatial and
Temporal Analysis, Financial Risk Estimation.

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Parsian, M., Data algorithms with Spark: Recipes and design patterns for scaling up using PySpark, O'Reilly
- 2. Chambers, B., & Zaharia, M., Spark: The definitive guide: Big data processing made simple, O'Reilly
- 3. Frampton, M., Mastering Apache Spark. Packt Publishing
- 4. Guller, M., Big data analytics with Spark: A practitioner's guide to using Spark for large scale data analysis. Apress
- 5. Ryza, S., Laserson, U., Owen, S., & Wills, J., Advanced Analytics with Spark: Patterns for learning from data at scale, O'Reilly
- 6. Bekkerman, R., Bilenko, M., & Langford, J., Scaling up machine learning: Parallel and distributed approaches, Cambridge University Press
- 7. Miner, D., & Shook, A., MapReduce design patterns: Building effective algorithms and analytics for Hadoop and other systems, O'Reilly
- 8. Lin, J., & Dyer, C, Data-intensive text processing with MapReduce, Morgan & Claypool Publishers.

Suggested List of Experiments:

Sr.	Name of Experiments/Exercises	Hours
No.		
1	Hadoop vs. Spark Comparison	04
	Objective: To compare Hadoop and Spark frameworks by processing a sample dataset (e.g., word count or log file analysis).	
	Procedure: Process the dataset using Hadoop MapReduce and Spark RDD.	
	Measure the execution time and resource usage for both frameworks.	
	Outcome: Understand the performance differences between Hadoop and	
	Spark	
2	MapReduce Programming Concepts using Spark	04
	Objective: To write a MapReduce program for counting word frequencies in a large text dataset.	
	Procedure: Create a Java or Python program using the MapReduce framework. Execute the program on a Hadoop cluster.	
	Outcome: Learn the fundamentals of MapReduce programming and its execution	

3	RDD Operations and Transformation in Spark	06
	Objective: To perform basic RDD operations such as map, filter, reduce, and join using Spark	
	Procedure: Load a sample dataset into an RDD. Apply transformations (map, filter) and actions (reduce, collect) on the RDD. Observe and	
	interpret the results.	
	Outcome: Learn to work with Resilient Distributed Datasets (RDDs) in Spark	
4	Machine Learning using Spark	04
	Objective: To implement a Naive Bayes classifier using MapReduce for text classification	
	Procedure: Create a labeled dataset for classification.	
	Write the MapReduce code to calculate probabilities and classify the data. Test the classifier's performance on the dataset.	
	Outcome: Understand how to implement machine learning models using	
	MapReduce	
5	Spark Application Development	06
	Objective: To write and execute a Spark application in Scala, Python, and Java to compute statistical measures of a dataset.	
	Procedure: Develop a Spark application to calculate mean, median, and variance. Run the application in local and cluster deployment modes.	
	Outcome: Understand the basics of Spark application development and execution	
6	Cluster Deployment Modes in Spark	06
į.	Objective: To configure and deploy a Spark application in standalone and cluster modes.	
	Procedure: Configure Spark on a local machine and a cluster. Deploy the application and analyse its execution flow using DAGs, stages, and tasks.	
	Outcome: Learn about Spark's deployment modes and execution mechanisms	