Institute:	School of Technology		
Name of Programme:	M Tech CSE, MTech CSE (Cyber Security),		
	MTech CSE (Data Science)		
Course Code:	6CS377ME25		
Course Title:	Distributed Data Analytics		
Course Type:	Department Elective-II		
Year of Introduction:	2025-26		

NIRMA UNIVERSITY

L	T	Practical Component				
		LPW	PW	W	S	
2	0	2	-	-	-	3

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to:

- 1. demonstrate the implementation of scalable solutions for mining (BL2) massive datasets using Spark's MLlib and other core libraries
- 2. analyse the architectural components and distributed computing (BL3) paradigms of Apache Spark for efficient big data processing
- (BL3) 3. experiment with querying, graphs, and streaming data in Spark (BL5)
- 4. evaluate the performance of Spark applications.

Unit	Contents	Teaching Hours
		(Total 30)
Unit-I	Analyzing Big Data: Challenges of Data Science, Evolution of Big	06
	Data Processing (Hadoop vs. Spark), Introduction MapReduce	
	Programming, MapReduce Based Machine Learning, Introduction of	
	Apache Spark, The Spark Programming Model	
Unit-II	Spark Framework: Spark Ecosystem and Components, Advantages	06
	of Spark, Spark Driver, Executors, and Cluster Managers, Resilient	
	Distributed Dataset (RDD), Execution Flow (DAGs, Stages, and	
	Tasks), Cluster Deployment Modes, Writing Spark Application -	
	Spark Programming in Scala, Python, R, Java - Application Execution	
Unit-III	Spark Streaming, Spark SQL and GraphX: Overview – Errors and	06
	Recovery – Streaming Source – Streaming live data with spark, SQL	
	Context - Importing and Saving data - Data frames - using SQL -	
	GraphX overview – Creating Graph – Graph Algorithms	
Unit-IV	Classification, Regression, and Clustering with Spark MLLib:	06
	Linear support vector machines - Naive Bayes model- Decision Trees	
	- Least square regression- Decision trees for regression, Hierarchical	
	Clustering in a Euclidean and Non-Euclidean Space – The Algorithm	
TT '4 \$7	of Bradley, Fayyad, and Reina - A variant of K-means algorithm	
Unit-V	Recent Trends in Big Data Analytics using Spark:	06
	Recommendation Systems, Predictive Modelling, Geospatial and	
Red	Temporal Analysis, Financial Risk Estimation.	

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Parsian, M., Data algorithms with Spark: Recipes and design patterns for scaling up using PySpark, O'Reilly
- 2. Chambers, B., & Zaharia, M., Spark: The definitive guide: Big data processing made simple, O'Reilly
- 3. Frampton, M., Mastering Apache Spark. Packt Publishing
- 4. Guller, M., Big data analytics with Spark: A practitioner's guide to using Spark for large scale data analysis. Apress
- 5. Ryza, S., Laserson, U., Owen, S., & Wills, J., Advanced Analytics with Spark: Patterns for learning from data at scale, O'Reilly
- 6. Bekkerman, R., Bilenko, M., & Langford, J., Scaling up machine learning: Parallel and distributed approaches, Cambridge University Press
- 7. Miner, D., & Shook, A., MapReduce design patterns: Building effective algorithms and analytics for Hadoop and other systems, O'Reilly
- 8. Lin, J., & Dyer, C, Data-intensive text processing with MapReduce, Morgan & Claypool Publishers.

Suggested List of Experiments:

Sr.	Name of Experiments/Exercises	Hours
No.		
1	Hadoop vs. Spark Comparison	04
	Objective: To compare Hadoop and Spark frameworks by processing a sample dataset (e.g., word count or log file analysis).	
	Procedure: Process the dataset using Hadoop MapReduce and Spark RDD. Measure the execution time and resource usage for both frameworks.	
	Outcome: Understand the performance differences between Hadoop and Spark	
2	MapReduce Programming Concepts using Spark	04
	Objective: To write a MapReduce program for counting word frequencies in a large text dataset.	
	Procedure: Create a Java or Python program using the MapReduce	
	framework. Execute the program on a Hadoop cluster.	
	Outcome: Learn the fundamentals of MapReduce programming and its execution	
3	RDD Operations and Transformation in Spark	06
	Objective: To perform basic RDD operations such as map, filter, reduce, and join using Spark.	
	Procedure: Load a sample dataset into an RDD. Apply transformations	
	(map, filter) and actions (reduce, collect) on the RDD. Observe and interpret the results.	
	Outcome: Learn to work with Resilient Distributed Datasets (RDDs) in	
	Spark	
4	Machine Learning using Spark	04
	Objective: To implement a Naive Bayes classifier using MapReduce for text classification.	W/
	0 18	N

125 D:\Divy_Academics\Divy_Academics - I\Divy-Academics\NOTIFICATIONS\I - ACAD-COUN\54-Noti - AC - 130325\- Noti - - 3(D) - 3 IT-NT CSE(C) Procedure: Create a labeled dataset for classification.

Write the MapReduce code to calculate probabilities and classify the data. Test the classifier's performance on the dataset.

Outcome: Understand how to implement machine learning models using MapReduce

5 Spark Application Development

06

Objective: To write and execute a Spark application in Scala, Python, and Java to compute statistical measures of a dataset.

Procedure: Develop a Spark application to calculate mean, median, and variance. Run the application in local and cluster deployment modes.

Outcome: Understand the basics of Spark application development and execution

6 **Cluster Deployment Modes in Spark**

06

C

Objective: To configure and deploy a Spark application in standalone and cluster modes.

Procedure: Configure Spark on a local machine and a cluster. Deploy the application and analyse its execution flow using DAGs, stages, and tasks. Outcome: Learn about Spark's deployment modes and execution mechanisms.