NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology		
Name of Programme:	MTech CSE (Data Science)		
Course Code:	6CS380ME25		
Course Title:	Multimedia and Time Series Data Analytics		
Course Type:	Department Elective-II		
Year of Introduction:	2025-26		

L	T	Practical Component				C
		LPW	PW	W	S	
2	0	2	-	-	-	3

Course Learning Outcomes (CLO):

Unit

At the end of the course, the students will be able to:

- 1. summarise the fundamental concepts of multimedia data (image, audio, (BL2) video) and time series data
- 2. make use of algorithms for representation, processing, and analysis of (BL3) multimedia and time series data
- 3. examine algorithms and models for classification, clustering, and forecasting (BL4)
- 4. build applications for processing multimedia and time series data using libraries and frameworks. (BL6)

Contents

Teaching Hours (Total 30)

03

05

- Unit-I Introduction to Multimedia and Time Series Data: Types of multimedia data: Images, audio, video, Characteristics and challenges of time series data, Applications in speech recognition, finance, healthcare, and environmental monitoring
- Unit-II Fundamentals of Image, Audio, and Video Processing: Basics of digital images: Pixels, histograms, filtering, Fundamentals of audio signals: Waveforms, spectrograms, feature extraction, Video processing: Frames, motion estimation, keyframe extraction, Tools: OpenCV, Librosa, FFmpeg
- Unit-III **Time Series Representation and Feature Engineering:** Time domain vs. frequency domain representation, Statistical features (mean, variance, skewness), Fourier and wavelet transforms, Autoregressive (AR), Moving Average (MA), and ARMA models
- Unit-IV **Machine Learning for Multimedia and Time Series Analytics:** Feature extraction and dimensionality reduction (PCA, t-SNE), Classification and clustering (SVM, k-NN, k-Means, DBSCAN), Deep learning models: CNNs for images, RNNs and LSTMs for time series, Use cases: Audio classification, image recognition, video summarization

07

08

D:Divy_Academics\Divy_Academics - I\Divy-Academics\NOTIFICATIONS\1 - ACAD-COUN\54-Noti - AC - 130325\- Noti - - 3(D) - 4_IT-MT_CSE(DS) - 1 1

184

- Unit-V **Forecasting and Predictive Analytics in Time Series:** Stationarity 0 and differencing, ARIMA, SARIMA, GARCH models, Deep learning for forecasting: LSTMs, Transformer-based models, Anomaly detection in time series data
- Unit-VI **Applications and Case Studies:** Speech and music information 02 retrieval, Stock market prediction, Weather and climate forecasting, Healthcare applications: ECG and EEG analysis.

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Bishop, C. M., Pattern Recognition and Machine Learning, Springer
- 2. Hastie, T., Tibshirani, R., & Friedman, J, The Elements of Statistical Learning, Springer
- 3. Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M., Time Series Analysis: Forecasting and Control, Wiley
- 4. Gonzalez, R. C., & Woods, R. E., Digital Image Processing. Pearson
- 5. Shumway, R. H., & Stoffer, D. S., Time Series Analysis and Its Applications, Springer
- 6. Goodfellow, I., Bengio, Y., & Courville, A., Deep Learning, MIT Press
- 7. Oppenheim, A. V., & Schafer, R. W., Discrete-Time Signal Processing, Pearson
- 8. Müller, A. C., & Guido, S., Introduction to Machine Learning with Python, O'Reilly.

Suggested L	ist of Experiments:
Sr	Name of Experiments/Exercises

Sr.	Name of Experiments/Exercises	Hours
No.		
1	Image Processing basics	02
2	Audio Signal analysis and feature extraction	02
3	Video frame extraction and motion analysis	02
4	Time series data preprocessing and visualization	02
5	Statistical Analysis and Feature Engineering for Time Series	02
6	Time Series Forecasting using ARIMA	04
.7	Deep Learning for Time Series Forecasting (LSTMs)	04
8	Image Classification using CNNs	04
9	Audio Classification using Machine Learning	04
10	Anomaly Detection in Time Series Data.	04