Institute:	Institute of Technology, School of Technology ne: MTech CSE (Cyber Security)				
Name of Programme:					
Course Code:	6CS401CC22				
Course Title:	Machine and Deep Learning				
Course Type:	Department Elective-I				
Year of Introduction:	2022-23				

NIRMA UNIVERSITY

Credit Scheme

L	T	Practical Component				
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

Unit

At the end of the course, students will be able to -

- 1. demonstrate the concepts of supervised and unsupervised learning, (BL2) and their applications
- 2. apply supervised and unsupervised learning techniques, including (BL3) clustering and classification algorithms, to analyze datasets
- 3. develop deep learning models such as ANNs, CNNs, and sequence (BL3) models (RNNs, LSTMs, GRUs) for complex applications
- 4. evaluate advanced techniques like transfer learning, GANs, and (BL5) reinforcement learning for solving research challenges.

Contents

Teaching Hours (Total 45) 02

- Unit-I **Introduction to ML and DL:** Motivation and Applications, importance of Data Visualization, Basics of Supervised and Unsupervised Learning
- Unit-II **Unsupervised Learning:** Hierarchical Agglomerative Clustering, k- 03 means Algorithm, Self-Organizing Maps
- Unit-III Supervised Learning: Regression Techniques: Basic concepts and applications of Regression, Simple Linear Regression Gradient Descent Method, Multiple Linear Regression, Non-Linear Regression, Linear Regression with Regularization, Hyper-parameters tuning, Loss Functions, Evaluation Measures for Regression Techniques

Classification Techniques: Naïve Bayes Classification, Fitting Multivariate Bernoulli Distribution, Gaussian Distribution and Multinomial Distribution, K-Nearest Neighbours, Decision trees, Support Vector Machines

Unit-IV Artificial Neural Networks: Perceptron Learning, Feed Forward 10 Neural Networks, Back-propagation, Unstable and vanishing Gradient Problem

Convolutional Neural Networks: Convolution & Pooling, Dropout, Batch Normalization, State-of-the-art CNNs

- Unit-V **Transfer Learning & Domain Adaptation:** Transfer Learning Scenarios, Applications of Transfer Learning, Transfer Learning Methods, Fine Tuning and Data Augmentation, Supervised, Semi-Supervised and Unsupervised Deep Learning
- Unit-VI Sequence Models: Recurrent Neural Networks (RNN), Language Modelling, Long-Short Term Memory Network, Gated Recurrent Unit, Bi-directional RNN, Applications of Sequence Models
- Unit-VII Advanced Concepts: Linear Discriminant Analysis, Auto encoders and Stacked Autoencoders, Generative Adversarial Networks, Deep Reinforcement Learning.

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Tom Mitchell, Machine Learning, McGraw Hill
- 2. C. Bishop, Pattern Recognition and Machine Learning, Springer
- 3. Kishan Mehrotra, Chilukuri Mohan, and Sanjay Ranka, Elements of Artificial Neural Networks, Penram International
- 4. Athem Ealpaydin, Introduction to Machine Learning, Prentice Hall
- 5. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press
- 6. Charu C. Aggarwal, Neural Networks and Deep Learning A Textbook, Springer
- 7. Adam Gibson, Josh Patterson, Deep Learning, O'Reilly
- 8. Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical Learning, Springer.

Suggested List of Experiments:

Sr.	Name of Experiments/Exercises		
No.			
1	Introduction to Python, Numpy, Pandas, Matplotlib, Sklearn and Pytorch	04	
2	Simple and Multiple Linear Regression using Gradient Descent & Normal	04	
	Equation Method (without using sklearn or equivalent library for both)		
3	Linear Regression with Regularization (without using sklearn or equivalent	02	
	library) and Simple and Multiple Linear Regression with and without		
	regularization using Sklearn		
4	Naïve-Bayes - Multivariate Bernoulli, Multinomial and Gaussian using	02	
	sklearn		
5	Decision Trees – ID3, C4.5 using sklearn and Support Vector Classification	02	
	and Regression with Grid Search for Hyper-parameter tuning using sklearn		
6	AND gate using Perceptron Learning (self-implementation) and Ex-OR	04	
	Gate/any other problem using Backpropagation Neural Networks (self-		
	implementation)		
7	Backpropagation Neural Network and K-means using sklearn	02	
8	Convolutional Neural Network on MNIST, Fashion MNIST and CIFAR10	04	
	datasets with and without transfer learning		
9	Language Modelling using RNN	04	

10 MNIST like image generation using GAN. 02

241

03

06

09