Institute:	Institute of Technology			
Name of Programme:	MTech CSE (Cyber Security)			
Course Code:	6CS403CC25			
Course Title:	Cryptography Essentials			
Course Type:	Core			
Year of Introduction:	2025-26			

NIRMA UNIVERSITY

L	T	Practi	ent	С		
		LPW	PW	W	S	
3	0	2	-	-	-	4

Teaching

Course Learning Outcomes (CLOs):

At the end of the course, the student will be able to -

- 1. explain the fundamentals of classical and advanced cryptography (BL2) techniques
- 2. apply the mathematical foundations to modern cryptographic techniques (BL3)
- 3. analyse various security mechanisms for application development (BL4)
- 4. evaluate numerical examples related to Galois field, symmetric and (BL5) asymmetric cryptographic techniques.

Unit	Contents	Hours
		(Total 45)
Unit-I	Cryptography: Basics of cryptography, OSI Security Architecture, Security attacks, services and mechanisms	03
Unit-II	Symmetric Ciphers : Introduction, Classical encryption techniques, Block ciphers and data encryption standards, Basic cryptanalysis, Modular arithmetic, Stream ciphers, AES algorithm	08
Unit-III	Block Cipher operations : Multiple encryptions and Triple DES, different modes of block cipher operations	04
Unit-IV	Pseudorandom number generation and stream ciphers : Principles of pseudorandom number generations, Pseudorandom number generators, Pseudorandom number generators using a block cipher, stream ciphers	04
Unit-V	Public key cryptosystem: Principles of public key cryptosystem, The RSA algorithm, Fermat's and Euler's theorem, Elliptic Curve Cryptography, Elgamal, other public key cryptosystems	05
Unit-VI	Cryptographic hash functions : Requirements and applications of cryptographic hash functions, Hash function based on Cipher Block Chaining, Secure Hash Algorithm	05
Unit-VII	Message Authentication Codes : Requirements and applications of Message Authentication Codes, MACs based on Hash function, MACs based on Block ciphers	05
Unit-VIII	Digital Signatures : Requirements and Applications of Digital Signatures, different digital signature schemes	06
Unit-IX	Key Management and Distribution: Symmetric key distribution using symmetric encryption, Symmetric key distribution using asymmetric encryption, distribution of public keys.	05

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. W. Stallings, Cryptography and Network Security: Principles and Practices, Prentice Hall
- 2. Charlie Kaufman, Network Security: Private Communication in a Public World, Prentice Hall
- 3. Aegean Park Pr, Basic Cryptanalysis, Field Manual, DoD, USA
- 4. J. Katz and Y. Lindell., Introduction to Modern Cryptography, Taylor & Francis
- 5. A. Menezes, P. Van Oorschot, S. Vanstone, Handbook of Applied Cryptography, Taylor & Francis.

Suggested List of Experiments:

Sr.	Name of Experiments/Exercises	Hours
No.		
1	Implement Playfair Cipher, Rail fence Cipher, and Transposition technique	04
2	Implement simplified DES encryption (and decryption)	02
3	Generate pseudorandom numbers using various techniques	04
4	Finding the Greatest Common Divisor of 2 numbers using various methods,	02
	implement Euler's Method, the Chinese Remainder Theorem	
5	Implementation of RSA algorithm	02
6	Implementation of ElGamal Algorithm	02
7	Implementation of Elliptic Curve Cryptography	02
8	Implementation of stream cipher technique using RC4	04
9	Implementing a Digital Signature scheme	04
10	Implement a small application to carry out Confidentiality, Authentication,	04
	Integrity, Access Control, and Digital Signatures.	30