NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Technology		
Name of Programme:	MTech CSE (Data Science)		
Course Code:	6CS471ME25		
Course Title:	IoT and Edge Analytics		
Course Type:	Department Elective-II		
Year of Introduction:	2025-26		

L	T	Practical Component				
		LPW	PW	W	S	
2	0	2	-	-	-	3

¢C

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to:

- 1. explain the architectural components and platforms of the IoT ecosystem (BL2)
- 2. apply appropriate access technology and protocols as per the application (BL3) requirement
- 3. appraise the role of big data, cloud computing, and data analytics in a typical (BL5) IoT system
- 4. design modern edge analytics applications for single-board computers and (BL6) microcontrollers.

Unit	Contents	Teaching
		Hours
	Χ.,	(Total 30)
Unit-I	Introduction to IoT: applications, IoT architectures, introduction to	02
	analytics, IoT analytics challenges	
Unit-II	IoT Networking: IoT devices, Networking basics, IoT networking	07
	connectivity protocols, IoT networking data messaging protocols,	
	analyzing data to infer protocol and device characteristics	
Unit-III	IoT Analytics for the Cloud: Introduction to elastic analytics,	05
	Decouple key components, Cloud security and analytics, designing	
	data processing for analytics, Applying big data technology to storage	
Unit-IV	Exploring IoT Data: Exploring and visualizing data, Techniques to	06
	understand data quality, Basic time series analysis, Statistical analysis	
Unit-V	Data Science for IoT Analytics: Introduction to Machine Learning,	05
	Feature engineering with IoT data, Validation methods, Understanding	
	the bias-variance tradeoff, Use cases for deep learning with IoT data	
Unit-VI	Edge AI and Analytics: Optimizing and deploying models on edge	05
	devices, Monitor and audit edge analytics.	
Q .16 Q4		

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Minteer, Andrew, Analytics for the Internet of Things (IoT), Packt Publishing Ltd.
- 2. Colin Dow, Hands-on Edge Analytics with Azure IoT, Packt Publishing Ltd.
- 3. Gerardus Blokdyk, IoT Edge Analytics, 5starcooks
- 4. Kai Hwang, Min Chen, Big-Data Analytics for Cloud, IoT and Cognitive Computing, Wiley
- 5. Hwaiyu Geng, Internet of Things and Data Analytics Handbook, Wiley
- 6. John Soldatos, Building Blocks for IoT Analytics Internet-of-Things Analytics, RiverPublishers
- 7. Gerardus Blokdyk, IoT Analytics A Complete Guide, 5starcooks.

Suggested List of Experiments:

Sr.	Name of Experiments/Exercises		
No.			
1	IoT Applications Development with Cisco Packet Tracer	02	
2	Programming the IoT boards: ESP8266/ESP32/Arduino with IDE	02	
3	IoT Sensor and Actuator integration with ESP32/ESP8266 with WiFi and HTTP	02	
4	Implementing REST API Server for IoT devices	04	
5	Publish and Subscribe with MQTT Client and MQTT Broker using	02	
	RPi/ESP8266/ESP32		
6	IoT Application with NodeRed: MQTT, MongoDB, HTTP REST client and server	04	
7	IoT Application Development with NodeRed: Designing Dashboard for	04	
	IoT Data		
8	Designing IoT Analytics Pipeline on Cloud Platform and Data	04	
	Visualization		
9	Analysing and Processing IoT Data with ML approaches	02	
10	Deploying the DL inference models on Edge Computing devices.	04	

194 D:Divy_Academics\Divy_Academics - I\Divy-Academics\NOTIFICATIONS\I - ACAD-COUN\54-Noti - AC - 130325\- Noti - 3(D) - 4_IT-MT_CSE(DS) - I_IV (dec), doex