Institute:	Institute of Technology, School of Technology		
Name of Programme:	MTech CSE (Data Science)		
Course Code:	6CS472ME25		
Course Title:	Social Network Analytics		
Course Type:	Department Elective-III		
Year of Introduction:	2025-26		

L	T	Practical Component				C
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLO):

At the end of the course, the students will be able to:

- 1. explain the intricacies and anomalies of social network structures (BL2)
- 2. apply network growth and link analysis models for social network (BL3)
- (BL3) 3. identify communities and cascade behaviors in communities
- (BL6) 4. build graph learning-based social network applications.

Contents	Teaching Hours (Total 45)
Introduction, Network Measures, and Network Growth Models:	07
Definition, Need, Applications, Preliminaries, Graph Visualisation	
Tools, Network Measures: Basics, Node Centrality, Assortivity,	a
Real-World Networks, Random Network Model, Ring Lattice	
	08
, , <u>,</u>	
	08
Search, Evaluation of Community Detection Methods	
	Introduction, Network Measures, and Network Growth Models: Definition, Need, Applications, Preliminaries, Graph Visualisation Tools, Network Measures: Basics, Node Centrality, Assortivity, Transitivity and Reciprocity, Similarity, Degeneracy, Properties of Real-World Networks, Random Network Model, Ring Lattice Network Model, Watts–Strogatz Model, Preferential Attachment Model, Price's Model, Local-world Network Growth Model, Network Model with Accelerating Growth, Aging in Preferential Attachment Link Analysis and Link Prediction: Applications of Link Analysis, Signed Networks, Strong and Weak Ties, Link Analysis Algorithms, PageRank, Personalised PageRank, DivRank, SimRank, PathSIM, Applications of Link Prediction, Temporal Changes in a Network, Problem Definition, Evaluating Link Prediction Methods, Heuristic

Unit

D:\Divy_Academics\Divy_Academics - I\Divy-Academics\NOTIFICATIONS\1 - ACAD-COUN\54-Noti - AC - 130325\- Noti - - 3(D) - 4_IT-MT_CSE(DS) - I_IV (encl).docx

- Cascade Behaviours and Network Effects: Preliminaries and Unit-IV Important Terminologies, Cascade Models, Case Study - The "Indignados" Movement, Probabilistic Cascades, Epidemic Models, Independent Cascade Models, Cascade Prediction
- Unit-V Anomaly Detection in Networks: Outliers versus Network-based Anomalies, Challenges, Anomaly Detection in Static Networks, Anomaly Detection in Dynamic Networks
- Graph Representation Learning: Machine Learning Pipelines, Unit-VI 08 Intuition Behind Representation Learning, Benefits of Representation Learning, Criterion for Graph Representation Learning, Graph Representation Learning Pipeline, Representation Learning Methods

Self-Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Suggested Readings/ References:

- 1. Stanley Wasserman, Katherine Faus, Social Network Analysis: Methods and Applications, Cambridge University Press
- 2. Tanmoy Chakraborty, Social Network Analysis, Wiley
- 3. Albert-Lazzlo Barabasi, Network Science, Cambridge University Press.

Suggested List of Experiments:

Name of Experiments/Exercises Sr. Use network visualization tools to compute degree distribution, clustering 02 1 coefficient, and shortest path Calculate node centrality measures like degree, betweenness, closeness, and 2 02 eigenvector. Also, the most influential nodes will be identified using different centrality metrics Implement and compare network growth models and analyze how network 3 02 structure changes over time Implement and compare PageRank, Personalised PageRank, and SimRank 04 4 algorithms to rank web pages Apply community detection algorithms (Louvain, Girvan-Newman) on real-world 5 04 datasets. Evaluate the quality of detected communities using modularity scores Implement heuristic-based link prediction models (Common Neighbors, Jaccard, 6 02 Adamic-Adar) and evaluate the accuracy of link prediction using precision and recall Simulate the Independent Cascade Model (IC) and Linear Threshold Model (LT). 7 04 Also, observe how information spreads through a network and identify influential nodes Detect anomalies in static and dynamic networks using outlier detection 02 8 techniques. Also, apply anomaly detection on real-world datasets such as fraud detection in financial transactions.

- 9 Implement node embedding techniques like DeepWalk or Node2Vec. Also, 02 visualize embeddings and use them for classification tasks
- 10 Perform an end-to-end analysis on a large-scale dataset. Apply link analysis, 06 community detection, and link prediction to extract meaningful insights.

a

204

D:\Divy_Academics\Divy_Academics\Divy_Academics\Divy_Academics\NOTIFICATIONS\I - ACAD-COUN\54-Noti - AC - 130325\- Noti - - 3(D) - 4 IT-MT CSE(DS) - 1 IV (encl).doc

Hours

07

07