Institute:	Institute of Technology
Name of Programme:	B.Tech. in Mechanical Engineering
Course Code:	
Course Title:	Basics of Flight and Aerodynamics
Course Type:	Department Elective
Year of Introduction:	2024-25

L	Т	Practical component				С
I		LPW	PW	W	S	
3	1	0	-	-	-	4

Course Learning Outcomes (CLOs):

After successful completion of the course, the student will be able to -

1	explain the evolution of aircraft and aircraft industry,	(BL2)
2	infer the basics of flight and aircraft systems,	(BL2)
3	apply the basic principles of aerodynamics to aircraft systems,	(BL3)
4	analyse the mechanics of flight and its performance.	(BL4)

Unit

Contents

Unit I Overview of Aircraft Industry

The historical evolution of flight; aircraft industry, manufacturing and materials, industry supply chain; global and Indian scenario.

Unit II Basics of Flight and Aircraft Systems

Earth's atmosphere and International Standard Atmosphere. Basic principles of flight, basic components of an aircraft, structural members, aircraft axis system, aircraft motion, control surfaces and high lift devices, tail unit arrangements, landing gear arrangements, cockpit and instruments, structural concepts, stability and control. Aircraft propulsion systems- IC Engine, propeller and jet engines. Fuel systems. Hydraulic and Pneumatic systems, air-conditioning and environment control system (ECS).

Unit III Principles of Aerodynamics

Viscous flows; generation of lift, drag, pitching moments, types of drag, lift curve, drag curve, lift/drag ratio curve, factors affecting lift and drag, Center of Pressure and its effects. Pressure distribution and flow separation, airfoils and airfoil

Teaching hours

(Total 45)

04

14

nomenclature, finite wings, pressure distribution over a wing section, compressibility, Mach waves, Mach angles, Critical Mach number.

Unit IV Flight Mechanics and Performance

Introduction to flight mechanics, horizontal flight performance, power curves, maximum and minimum speeds of horizontal flight, range, endurance, effects of changes of engine power, effects of altitude on power curves. Climbing and descending flight. The flight envelope. Sonic and supersonic flight.

Self – Study:	The self-study content will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.
Suggested Readings/References:	 Kermode A. C., Barnard R H, Philpott D R, Mechanics of Flight, Pearson. Anderson J., Introduction to Flight, McGraw Hill. Kermode A. C., Flight without Formulae, Pearson. Moir I., Seabridge A., Aircraft Systems, Wiley.
Suggested List of Tutorials:	 Prediction of earth's atmosphere and air properties as per ISA. Calculation of strength and stress analysis of aircraft components. Calculations for a sub-sonic wind tunnel. Calculations for a supersonic wind tunnel. Evaluation of various characteristics of an airfoil. Performance calculations for a propeller type aircraft. Performance calculations for a jet propulsion aircraft. CFD software applications in aerodynamics – Case studies.

Institute:	Institute of Technology
Name of Programme:	B.Tech. in Mechanical Engineering
Course Code:	
Course Title:	Fluid Power Engineering
Course Type:	Department Elective
Year of Introduction:	2024-25

L	Т	Practical component				С
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLOs):

After successful completion of the course, the student will be able to -

1	apply the fundamentals of impact of jet to fluid flow machines,	(BL3)
2	evaluate performance characteristics of hydro turbines,	(BL5)
3	examine the working principles of hydraulic pumps,	(BL4)
4	analyse the performance of different compressors,	(BL4)
5	explain the construction and working of hydraulic systems.	(BL2)

Unit	Contents		
Unit I	Impact of Jet	05	
	Fluid flow machines - basic principle, types, impulse-momentum		
	principle, impact of jet on fixed and moving flat and curved vanes, series		
	of flat and curved vanes		
Unit II	Hydraulic Turbines	10	
	Hydropower plants - classification, layout, major equipment, small		
	hydropower, classification of hydro turbines, working of Pelton wheel,		
	Francis and Kaplan turbines, velocity triangles, design criteria,		
	governing, specific speed, characteristic curves, cavitation.		
Unit III	Pumps	09	
	Centrifugal pump - constructional features, basic theory, velocity triangles,		
	design concepts, pressure rise through impeller, characteristics curves,		
	priming, similarity relations, and specific speed.		

Positive displacement pumps – construction, working principle, characteristic curves.

Use of commercial CFD software for analysis of fluid flow machines.

Unit IV **Positive Displacement Compressors**

Reciprocating compressor – Terminology, single stage compression without and with clearance, power requirement and condition for minimum work, free air delivery, need for multi staging, and condition of minimum work for multistaging, inter-stage cooling.

Rotary compressors – Types, salient features, applications.

Unit V Dynamic Compressors

Centrifugal compressor – working principle, ideal energy transfer, velocity diagram, design criteria, isentropic efficiency, static and total temperatures, power input factor, slip and slip factor, pre-whirl, Mach number, surging and choking.

Axial flow compressor – **c**onstruction and operation, velocity diagram and work done factor, pressure ratio, blade loading and flow coefficient, static pressure rise, degree of reaction, airfoil blading.

Unit VI Hydraulic Systems

Construction details, operation and application of hydraulic accumulator, intensifier, ram, fluid coupling and torque converter.

Self – Study:The self-study content will be declared at the commencement of semester.Around 10% of the questions will be asked from self-study content.

Laboratory Work:Laboratory work will be based on above syllabus with minimum 10experiments to be incorporated

Suggested	1. Cengel Y	7., John Cimbala J., Fluid Mechanics, Tata McGraw Hill
Doodings/Doforoncos	Publishin	g Co. Ltd.
Readings/References:	2. Gerhart F	P. M. and Wright T., Fluid Machinery- Application, Selection
	and Desig	gn, CRC Press.
	3. Dixon S.	L and Hall C. A., Fluid mechanics and Thermodynamics of
	Turboma	chinery, Elsevier.

10

- 4. Som S. K, Biswas G., Chakraborty S., Introduction to Fluid Mechanics and Fluid Machines, McGraw Hill Publications.
- 5. Ojha C. S. P., Chandramouli P. N., Berndtsson R., Fluid Mechanics and Machinery, Oxford University Press.

Suggested list of experiments (not restricted to the following)

Sr. No.	Title	Hours
1.	To study the various components of hydropower plants.	02
2.	To find force coefficient for semi-circular vane.	02
3.	To study the governing of hydro turbines.	02
4.	To conduct the performance analysis of Impulse turbine.	02
5.	To conduct the performance analysis of Reaction turbine.	02
6.	To conduct the performance analysis of positive displacement pump.	02
7.	To draw performance characteristic curves for centrifugal pump	02
8.	To study the positive displacement pumps.	02
9.	To study the positive displacement compressors.	02
10.	To find the volumetric efficiency of a two-stage reciprocating compressor.	02
11.	To conduct the performance analysis of centrifugal compressor.	02
12.	To study the hydraulic systems.	02
13.	To demonstrate the commercial Computational Fluid Dynamics (CFD) software for design of fluid flow machines.	02

Institute:	Institute of Technology
Name of Programme:	B.Tech. in Mechanical Engineering
Course Code:	
Course Title:	Robotic Engineering
Course Type:	Department Elective
Year of introduction:	2024-25

L	Τ	Practic	lent	С		
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLOs):

After successful completion of the course, student will be able to -

1	select the applicable robotic arm configuration,	(BL3)
2	formulate the kinematic model of the robotic manipulator,	(BL6)
3	develop the dynamic equation of motion and trajectory plan for robotic arm joint,	(BL6)
4	recommend suitable sensors, actuators and end effectors for robotic manipulator.	(BL5)

Unit		Contents	Teaching hours
			(Total 45)
Unit I	Introduction to Robotics		10

Fundamentals of Robots, fundamentals of robot technology, classification of robotic arm, robot arm configurations, applications, Systems overview of a robot, basic components, robot specification, robot selection.

Unit II Robot Kinematics

Concept of transformation matrices, homogeneous transformation matrix and its applications to robotics, Co-ordinate transformation, transform arithmetic, inverse to transformation matrix, Denavit-Hartenber (DH) parameters, derivation of joint transformation matrix for robot manipulator, Forward kinematics, solutions for joint variables, need of inverse kinematics solutions for robot arm and its methodology, inverse kinematics for industrial robots, Linear and angular velocities of robot links and joint, mathematical concepts

for calculations of velocities, Jacobian matrix for link and joint velocities, singularities for industrial robots

Unit III Robot dynamics and trajectory generation

Trajectory generation for joint considering cubic polynomial, trapezoidal velocity profile and blended trajectory, joint space and cartesian space trajectory generation.

Lagrange-Euler formulation, calculation of kinetic and potential energy, dynamic equation of motion 1DOF and 2DOF robotic manipulator, Newton-Euler method, introduction to recursive dynamics.

Unit IV Sensors, Actuators and End effector

Inertia calculation for robotic application, motor and load torque, selection of electric motor, other type of actuators, Internal state and External state sensors for robotic application, End effectors, Classification, Force analysis and Gripper design, software related to Robotics, Robot programming methods and languages.

- Self Study:The self-study contents will be declared at the commencement of semester. Around 10%
of the questions will be asked from self-study contents.
- Laboratory Work: Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated

Suggested Readings/References: 1. Klafter R. D., Thomas A Chmielewski and Michael Negin, Robotics Engineering An integrated approach, Prentice Hall 2. Mittal R. K., Nagrath I. J., Robotics and Control, Tata McGraw-Hill Publishing Company Ltd. 3. Craig John, Introduction to Robotics, mechanics and control, Pearson Education 4. Groover M.P., Mitchell Weiss, Roger N. Nagel and Nicholas Godfrey, Industrial Robotics. Tata McGraw Hill Education Pvt. Ltd

5. Ghoshal Ashitava, Robotics Fundamental Concepts and Analysis, Oxford University Press.

Suggested list of experiments: (not restricted to the following)

Sr. No.	Title	Hours
1.	To programme the robotic manipulator for setting up of different tools.	02
2.	To programme the robotic manipulator for pick and place operation.	02
3.	To programme the robotic manipulator with interfacing of external devices.	02
4.	To programme the robotic manipulator using advance features.	02
5.	To write a computer programme for coordinate transformation.	02
6.	To carry out the forward and inverse kinematics of robotic manipulator using	02
	computer programming.	

7.	To simulate the robotic manipulator using CAD software.	04
8.	To carry out the dynamic analysis and simulation of robotic manipulator.	02
9.	To carry out the force analysis of mechanical gripper.	02
10.	To interface the position and velocity sensors with robot controller.	02
11.	To interface the motion and object detecting sensors with robot controller.	02

Institute:	Institute of Technology
Name of Programme:	B.Tech. in Mechanical Engineering
Course Code:	
Course Title:	Stress Analysis
Course Type:	Department Elective
Year of introduction:	2024-25

L	Т	Practical component			С	
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLOs):

After successful completion of the course, student will be able to -

- apply principles of elasticity theory to estimate stresses and strains in isotropic and 1 (BL4) non-isotropic materials using a tensorial approach,
- 2 formulate the boundary value problems in solid continua using stress and (BL6) displacement-based solution strategies,
- evaluate the planar problems using Airy stress function in rectangular and polar co-3 (BL5) ordinates,
- 4 estimate the stress and strain for a mechanical component using analytical, (BL5) simulations and experimental methods.

Unit		Contents	Teaching
			Hours
			(Total 45)
Unit I	Analysis of stress		13

Body force, surface force, stress/traction vector, state of stress at a point, rectangular, normal and shear components of a stress, stress components on an arbitrary plane, equality of cross shear, Numerical problems.

stress invariants, principal stresses, octahedral stress, planes of maximum shear, spherical and deviatoric stresses, equilibrium relations, plane state of stress, Mohr's circle in 2D and 3D, stress transformation, equations of equilibrium in differential form, Numerical problems.Stress - strain relationship, isotropic material, modulus of rigidity, bulk modulus, Young's modulus, their relations, displacement equations of equilibrium.

Unit III **Analysis of Strain**

Displacement field, strains in term of displacement field, change in length and linear components, rectangular strain components, change in direction and angle,

engineering shear strains, strain invariants, principal strains, strain deviator, plane state of strain, compatibility equations, Numerical Problems.

Unit IV Two dimensional problems in rectangular coordinates

Stress function formulation, plane stress, plane strain, generalized plane stress, Airy stress function, solution by polynomials -Saint-Venants principle -determination of displacements -bending of simple beams by stress function, , Numerical Problems. Airy stress function in polar coordinates, Stress Distributions Symmetrical about an Axis, general solution of two-dimensional problem in polar coordinates, application to Plates with Circular Holes, Numerical Problems.

Unit V Experimental stress analysis

Strain gauges, Requirements and materials for strain gauges, Electrical resistance strain gauges, gauge sensitivity and Gauge factor, temperature compensation, parameters affecting selection and behaviour of strain gauges, Rossette analysis and electrical circuits. Numerical Problems.

Photo-elasticity, stress optics law, properties of light, plain and circular polariscope, properties of fringes and fringe interpretation, compensation and separation techniques. Numerical Problems.

Self – Study:	The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.		
Laboratory Work: Laboratory work will be based on above syllabus with minimum 10 experiments incorporated			
Suggested	1. Srinath, L. S, Advanced Mechanics of Solids, McGraw Hill		
Readings/References:	2. Timoshenko, S. P. and . Goodier J. N., Theory of Elasticity, McGraw Hill.		
8	3. Budyans, Advanced Strength and Applied Stress Analysis, McGraw Hill.		
	4. Saad, M. H., Elasticity: Theory, Applications and Numerics, Academic Press.		
	5. Dally, J.W., and Riley, W.F., Experimental Stress Analysis, McGraw Hill.		

Suggested list of experiments: (not restricted to the following)

Sr. No.	Title	Hours
1.	To determine the stress field for the 1-D problems of mechanical engineering.	02
2.	To determine stress field for the 2-D problems of mechanical engineering.	04
3.	To determine stress field for the 3-D problems of mechanical engineering.	02
4.	To develop a computer program to solve the problem of stress analysis	04
5.	To develop a computer program to solve the problem of strain analysis	02
6.	To develop a computer program for the two-dimensional problems of theory of elasticity	04
7.	To develop a computer program for the two-dimensional problems in polar coordinates	04
8.	To evaluate strain using strain-gauge methods for the pressure vessel component.	04
9.	To determine strains in a beam using strain-gauge methods	02
10.	To use the polariscope methods for the stress analysis of components.	02

Institute:	Institute of Technology
Name of Programme:	B.Tech. in Mechanical Engineering
Course Code:	
Course Title:	Quality and Reliability Engineering
Course Type:	Department Elective
Year of introduction:	2024-25

L	T	Practical component			С	
		LPW	PW	W	S	
3	1	0	-	-	-	4

Course Learning Outcomes (CLOs):

After successful completion of the course, student will be able to -

1	apply statistical process control tools for improvement of quality,	(BL3)
2	adapt design of experiment for optimizing quality characteristics,	(BL6)
3	interpret experimental data using statistical analysis,	(BL5)
4	appraise the importance of reliability engineering.	(BL5)

Unit	Contents	Teaching Hours (Total 45)
Unit I	Quality Engineering	10
	Introduction and importance of quality engineering, quality concepts, statistical	
	process control tools and its limitation, measures of central tendency, measures	
	of dispersion, binomial and normal distribution.	
Unit II	Experimental Design Fundamentals	13
	Need and concept of design of experiment (DOE); experimental design	
	techniques, application of experimental design, features of experimentation,	
	introduction to factorial design, full and fractional factorial design of	
	experiments, role of contrasts, confounding, fractional replication, and other	
	aspects in factorial design.	
Unit III	Analysis of Variance and Taguchi Philosophy	12

Need for analysis of variance (ANOVA), introduction of analysis of variance, one-way and two-way ANOVA, critique of F-test. Concept of orthogonal arrays, selection and utilization steps in designing, conducting, and analysing an experiment. Taguchi philosophy and it's applications, concept of Taguchi loss function and its applications.

Unit IV Reliability Engineering

Reliability engineering fundamentals; failure data analysis; failure rate; mortality curve; concept of burn in period; useful life and wear out phase of a system; mean time to failure (MTTF); mean time between failure, (MTBF) and mean time to repair (MTTR); reliability in terms of hazard rate and failure density, conditional probability and multiplication rules, concepts of system reliability, reliability, availability, maintainability, and safety (RAMS).

Self – Study:	The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.
Suggested Readings/References:	 Montgomery, D.C., Design and Analysis of Experiments, John Wiley and Sons. Besterfield D.H., Quality Control, Prentice Hall. Taguchi, G., Introduction to Quality Engineering Designing Quality into Products and Process, Asian Productivity Organization, UNIPUP. Ross, P. J., Taguchi Techniques for Quality Engineering, Tata McGraw Hill. Elsayed E. A., Reliability Engineering, Wiley
Suggested List of Tutorials:	 Application of statistical process control tools for quality improvement Use of control charts for variable data Use of control charts for attribute data Application of design of experiments using factorial design Application of design of experiments using fractional factorial design Perform one-way analysis of variance (ANOVA) for given data Perform two-way analysis of variance (ANOVA) for given data Prepare design of experiments using orthogonal arrays Failure data analysis for reliability problems Determination of mean time to failure (MTTF); mean time between failure, (MTBF) and mean time to repair (MTTR) Evaluation of reliability for series, parallel and combined system Determination of availability and maintainability for a given system

Institute:	Institute of Technology
Name of Programme:	B.Tech. in Mechanical Engineering
Course Code:	
Course Title:	Mechatronics
Course Type:	Department Elective
Year of Introduction:	2024-25

L	Т	Practio	С			
		LPW	PW	W	S	
3	0	2	-	-	-	4

Course Learning Outcomes (CLOs):

After successful completion of the course, student will be able to-

1	appraise use of various mechatronics system in automation,	(BL5)
2	discuss functionality of various components used in mechatronics system,	(BL6)
3	select the sensors, actuators and controllers for given applications,	(BL5)
4	build mechatronics system for automations problems.	(BL3)

Unit		Contents	Teaching
			Hours
			(Total 45)
Unit I	Introduction		05

Introduction: Definition of Mechatronics, Mechatronics in manufacturing, Products, and design. Comparison between Traditional and Mechatronics approach, Microprocessor Based Controllers Examples, Comparison between Traditional and Mechatronics approach. Review of fundamental of Electronics

Unit II Sensors, Actuators and Signal Conditioning

11

Performance Terminology, displacement, position and proximity, velocity and motion, fluid pressure, temperature sensors, light sensors, selection of sensors, Operational amplifiers, inverting amplifier, differential amplifier, Protection, comparator, filters, Multiplexer, Pulse width Modulation Counters, decoders. Data acquisition – Quantizing theory, Analog to digital conversion, digital to analog conversion

Unit III Actuation Systems

Pneumatic and hydraulic systems: actuators, definition, example, types, and selection. Pneumatic actuator. Electro-pneumatic actuator. Hydraulic actuator, control valves, valve sizing valve selection.

Electrical actuating systems: solid-state switches, solenoids, relay coil; electric motors; DC motors, AC motors, single phase motor; 3-phase motor; induction motor; synchronous motor; stepper motors.

Mechanical Actuation Systems: Types of motion, Freedom and constraints, Loading, Gear Trains, Pawl & Ratchet, Belt & Chain drive, Bearing, Selection of Ball & Roller bearings, Mechanical aspects of motor selection, linkages

Unit IV Basic System Models and Analysis

Modelling of one and two degrees of freedom Mechanical, Electrical, Fluid and thermal systems, Block diagram representations for these systems

Unit V Programmable Logic Controller

Definition, Basic block diagram and structure of PLC, Input/Output processing, PLC Programming: Ladder diagram, logic functions, latching and sequencing, PLC mnemonics, Timers, internal relays and counters, Shift registers, Master and jump controls Data handling, Communication channels, Profi-bus and Field-bus, Analog input/output, Selection of PLC

Unit VI Mechatronics system design

Stages in designing mechatronic systems, traditional and mechatronic design, possible design solutions, various case studies

Self – Study:The self-study contents will be declared at the commencement of semester. Around
10% of the questions will be asked from self-study contents.

Laboratory Work: Laboratory Work will be based on topics covered under the above syllabus with minimum 10 experiments/exercises to be incorporated.

10

10

06

Suggested	1.	W. Bolton, Mechatronics, Pearson Education India.
D	2.	M. B. Histand and D. G. Alciatore, Introduction to Mechatronics and
Keadings/Keierences:		Measurement Systems, Tata McGraw-Hill Education.
	3.	D. Shetty & R. Kolk "Mechatronics System Design", 3rd edition. PWS
		Publishing.
	4.	Patrick O.J. Kaltjob, "Control of Mechatronic Systems: Model-Driven Design
		and Implementation Guidelines", Wiley Publishing.

5. HMT, "Mechatronics", Tata McGraw-Hill Education.

Suggested list of experiments: (not restricted to the following)

Sr. No.	Title	Hours
1.	To study of various sensors and transducers using Tinkercad software.	04
2.	To study signal conditioning devices using Tinkercad.	02
3.	To study speed control of stepper motor using MATLAB Simulink.	02
4.	To study DC speed control of servo motor using MATLAB Similink.	02
5.	To model and analyse hydraulic, pneumatic circuits using automation studio.	02
6.	To model and analyse electro-hydraulic, electro-pneumatic circuits using automation studio.	02
7.	To study PLC and its applications using Twin CAT.	02
8.	To develop hydraulic and pneumatic circuits for automation.	02
9.	To demonstrate functionality of PLC for automation.	02
10.	To model and analyse Mechanical, Fluid, Electrical and Thermal systems using MATLAB Simulink software.	04

Institute:	Institute of Technology
Name of Programme:	B.Tech. in Mechanical Engineering
Course Code:	
Course Title:	Mechanics of Composite Materials
Course Type:	Department Elective
Year of introduction:	2024-25

		L	T Practical componen		ent	С		
				LPW	PW	W	S	
		3	0	2	-	-	-	4
Cour	se Learning Outcomes (CLOs):							
After	successful completion of the course, student will be able to							
1	explain the various types of composite materials,				(BL	2)	
2	select the appropriate manufacturing method for composite materia	ls,			((BL:	5)	
3	compare mechanical properties of composite materials,				((BL-	4)	
4	assess the failure mechanisms for composite materials.				(BL:	5)	

UnitContentsTeaching
Hours
(Total 45)Unit IIntroduction06

Definitions, Classifications of Engineering Materials, Composites, Reinforcements and matrices, Types of reinforcements, Types of matrices, Types of composites, Carbon Fibre composites, Properties of composites in comparison with standard materials, Applications of metal, ceramic and polymer matrix composites.

Unit II Manufacturing methods Processing of Composite Materials, Hand and spray lay - up, injection moulding, resin injection, filament winding, Autoclave curing, pultrusion, centrifugal casting and prepregs. Fibre/Matrix Interface, mechanical.

Measurement of interface strength. Characterization of systems; carbon fibre/epoxy, glass fibre/polyester, etc. Manufacturing Techniques: Tooling and Specialty materials, Release agents, Peel plies, release films and fabrics, Bleeder and breather plies, bagging films.

Unit III Mechanical Properties -Stiffness and Strength

Geometrical aspects – volume and weight fraction. Unidirectional continuous fibre, discontinuous fibers, Short fiber systems, woven reinforcements – Mechanical Testing: Determination of stiffness and strengths of unidirectional composites; tension, compression, flexure and shear, Fracture testing etc.

Unit IV Laminates

Plate Stiffness and Compliance, Assumptions, Strains, Stress Resultants, Plate Stiffness and Compliance, Computation of Stresses, Types of Laminates -, Symmetric Laminates, Antisymmetric Laminate, Balanced Laminate, Quasiisotropic Laminates, Cross-ply Laminate, Angle ply Laminate. Orthotropic Laminate, Laminate Moduli, Hygrothermal Stresses.

Unit V Joining Methods and Failure Theories

Joining –Advantages and disadvantages of adhesive and mechanically fastened joints. Typical bond strengths and test procedures.

Self – Study:	The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.
Laboratory Work:	Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated
Suggested Readings/References:	 Mathews F. L. and Rawlings R. D., Composite Materials: Engineering and Science, Chapman and Hall, London, Englan. Chawla K. K., Composite materials, Second Edition, Springer. Daniel, I. M. and Ishaai., O., Engineering Mechanics of Composite Materials,
	Oxford University Press4. Kaw A. K., Mechanics of Composite Materials, CRC Press.

10

10

Suggested list of experiments: (not restricted to the following)

Sr. No.	Title	Hours
1.	To compare the properties of fibers and matrices.	04
2.	To prepare composite laminate using hand lay-up process.	02
3.	To prepare composite laminate using vacuum assisted resin transfer molding process.	04
4.	To demonstrate for preparation of composite product using pultrusion, and autoclave process.	02
5.	To develop a program for determination of stress for composite lamina.	04
6.	To develop a program for determination of strain for composite lamina.	04
-		02
1.	To develop a program for determination of volume and weight fraction for	02

7.	composite lamina.	02								
8.	To manufacture the CFRP component-using pre-peg based method.									
0		00								

9.	To d	etermine	the	stress,	strain	and	deformation	of a	n isotropic	laminate u	sing	02
	FEA.											