NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	B.Tech. in Mechanical Engineering
Course Code:	2ME302
Course Title:	Fluid Mechanics
Course Type:	Core
Year of introduction:	2023-24

Credit Scheme						
L	Т	Practical component				С
		LPW	PW	W	S	
2	0	2	-	-	-	3

Course Learning Outcomes (CLOs): After successful completion of the course, student will be able to –

line the basic principles of fluid statics,	(DL2)
illustrate the concepts of kinematics and dynamics of fluids,	(BL2)
utilise the principles of dimensional and model analysis,	(BL3)
apply the concepts of incompressible and turbulent flows.	(BL3)
	illustrate the concepts of kinematics and dynamics of fluids, utilise the principles of dimensional and model analysis, apply the concepts of incompressible and turbulent flows.

Syllabus:

Total Teaching Hours: 30

Unit	Syllabus	Teaching
		hours
Unit I	Fluid Statics	06
	Properties of fluids, pressure measurement, forces on submerged bodies,	
	stability of floating bodies.	
Unit II	Fluid Kinematics and Dynamics	06
	Control-volume analysis of mass, momentum and energy, fluid acceleration,	
	differential equations of continuity and momentum, Bernoulli's equation.	
Unit III	Dimensional Analysis	06
	Need for dimensional analysis, Buckingham's' method, dimension less	
	numbers and their significance, hydraulic similarities, type of models, model	
	analysis.	
Unit IV	Viscous Flow of Incompressible Fluids	08
	Introduction of hydrodynamic boundary layer, flow between two parallel	
	plates, Couette flow, flow through pipe, Hagen-Poiseuille equation, head	
	losses in pipe, bend and fittings, different viscometers.	

Unit V	Basics of Turb	ulent Flow and Compressible Flow	04		
]	Reynolds experi	olds experiment, types of flows, introduction to turbulent flow, Mach			
1	number and diffe	erent flow regimes, Interlocution to Fluid Machines.			
Self – Study:	The self of the q	-study contents will be declared at the commencement destions will be asked from self-study contents.	nt of semester. Around 10%		
Laboratory Wor	k: Laborat	ory work will be based on above syllabus with mini	mum 10 experiments to be		
Suggested	1.	Y A Cengel and J M Cimbala, Fluid Mech	nanics: Fundamentals and		
Readings/Refere	nces: 2.	Applications; McGraw Hill Publication. R W Fox, A T McDonald, P J Pritchard, Introductic Wiley and Sons.	n to Fluid Mechanics; John		
	3.	F M White, Fluid Mechanics; McGraw-Hill Publis	hing Co.		
	4.	A L Gerhart, B R Munson, J I Hochstein, P Fundamentals of Fluid Mechanics: John Wiley and	M Gerhart, T H Okiishi, Sons.		
	5.	D S Kumar, Fluid Mechanics and Fluid Power E Sons.	ngineering; S K Kataria &		

Suggested list of experiments: (not restricted to the following)

Sr. No.	Title	Hours
1.	Study of viscometers and determination of viscosity by Redwood	2
	viscometer.	
2.	Determination of Reynolds number for different types of flow through closed	2
	conduit.	
3.	Verification of Bernoulli's theorem.	2
4.	Calibration of flow measuring devices.	2
5.	Determination of metacentric height.	2
6.	Calibration of triangular notch.	2
7.	To obtain surface profiles of free vortex flow.	2
8.	To obtain surface profiles of forced vortex flow.	2
9.	Determination of minor losses in piping systems.	2
10.	Determination of major losses in piping systems.	2
11.	Demonstration of Computational Fluid Dynamics (CFD) software tools.	2
12.	To study the applications and basic working principles of various hydraulic	2
	machines.	
13.	Demonstration of in-house wind tunnel facility.	2