NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	B.Tech (Mechanical Engineering)
Course Code:	2ME801
Course Title:	Mathematics for Mechanical Engineering
Course Type:	Core
Year of introduction:	2023-24

L	Т	Praction	cal			С
		compo	onent			
		LPW	PW	W	S	
2	1	0	-	-	-	3

Total Teaching Hours: 30

Course Learning Outcomes (CLOs):

After successful completion of the course, student will be able to -

1	infer concepts related to Fourier series, vector calculus and its	(BL2)
	applications,	
2	solve engineering problems of higher order linear differential equations,	(BL3)

- 3 apply the concepts of Laplace transforms for mechanical engineering (BL3) problems,
- 4 make use of various numerical methods for engineering applications. (BL3)

Syllabus:

Unit	Syllabus	Teaching
		Hours
Unit I	Vector Calculus and Fourier Series	10
	Differentiation of scalars and vectors, Gradient, divergence and curl,	
	vector identities, directional derivatives, line, surface and volume	
	integrals, applications of Gauss, Stokes and Green's theorems, Fourier	
	series and its applications.	
Unit II	Differential Equations	10
	Higher order linear differential equations with constant coefficients;	
	method of separation of variables, similarity solutions, Euler-Cauchy	
	equation; initial and boundary value problems; Laplace transforms of	

elementary functions; application of Laplace transforms in solving

differential equations, solutions of heat, wave and Laplace's equations.

Unit III Numerical Methods

Numerical solutions of linear and non-linear algebraic equations (bracketing and open methods), solution of the system of linear algebraic equations, integration by trapezoidal and Simpson's rules; single and multi-step methods for ordinary differential equations (Euler's and Runge-Kutta higher order methods). Finite difference methods to solve partial differential equations. Use of software tools for solving mathematical problems pertaining to mechanical engineering.

Self – Study: The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings	 Michael D Greenberg, Advanced Engineering Mathematics, Prentice Hall, Inc. William Ames et al., Mathematics for Mechanical Engineers, CRC Press Erwin Krevszig, Advanced Engineering Mathematics, John Wiley & Sons, Inc. 		
/References:	4. Chapra and Canale, Numerical Methods for Engineers, McGraw Hill		
Suggested	1. Solution of problems using Fourier series		
list of	 Application of gradient, divergence and curl Estimation of surface and volume integrals 		
Tutorials:	4. Euler- Cauchy formulations		
	5. Solution of Initial and Boundary value problems		
	6. Problem solving using Laplace transforms		
	7. Estimation of roots of algebraic equations using numerical methods		

- 8. Interpolation using numerical methods
- 9. Solution of ordinary differential equations using numerical methods
- 10. Application of finite difference methods in problem solving.