NIRMA UNIVERSITY

Institute:	Institute of Technology, School of Engineering	
Name of Programme:	B. Tech. in Civil Engineering	
Course Code:	2CL401	
Course Title:	Geotechnical Engineering	
Course Type:	Core	
Year of Introduction:	2023-24	

T	Т	Practical Component				~
1.7		LPW	PW	W	S	C
2	_	2	-	-	_	3

Course Learning Outcomes (CLO):

At the end of the course, the student will be able to

1.	classify soils and derive physical properties of soil	(BL2)
2.	evaluate the engineering properties of soil	(BL5)
	analyze retaining structures and shallow foundations.	(BL4)
4.	estimate capacity of deep foundation	(BL5)

Syllabus:

Total Teaching hours: 30

•	Total Teaching I	iours: 50
Unit	Content	Teaching hours
Unit-I	Introduction to Soil Mechanics:	08
	Definition, formation of soil; Soil as three phase system & derived properties, index properties, consistency limits; classification of soils; Soil Investigations: methods, stages, planning, sampling, field tests, report.	Võ
Unit-II	Engineering Properties of Soil:	10
	Permeability: definition, factors affecting, measurements:	10
	Compaction: definition, compaction tests, field compaction method;	
	Shear strength: definition, shear parameters & theory, tests;	
	Consolidation: one-dimensional theory, test.	
Unit-III	Retaining Structures and Foundations	12
	Lateral earth pressures: Introduction, analysis: dry & wet soils;	
	pressure calculations for retaining walls; Introduction to slope	
	stability analysis; Shallow Foundations: Bearing capacity analysis,	
	settlement analysis, criteria for selection of shallow foundation;	
	Deep Foundation: Classification, load carrying capacity of piles, pile	
	groups; Ground improvement techniques.	

Self Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from selfstudy contents.

Suggested Readings/ References:

- Das, B. M. & Shobhan, K. *Principles of Geotechnical Engineering*, Cengage Learning India.
- Arora, K. R. *Soil Mechanics and Foundation Engineering*, Standard Publication.
- Ranjan, G., & Rao, A.S.R. Basic and Applied Soil Mechanics, New Age International Publication.
- Gulhati, S., & Datta, M. Geotechnical Engineering, Tata McGraw-Hill.
- Terzaghi, K. V., Peck, R. B. & Mesri, G. Soil Mechanics in Engineering Practice, John Wiley.
- Knappett, J. A., & Craig, R. F. Craig's Soil Mechanics, CRC Press.
- Das, B. M. Principles of Foundation Engineering, C.B.S Publishers
- Bowles, J. E. Foundation Analysis and Design, McGraw Hill.
- Codes: IS 1892, IS 2720, IS 6403, IS 2911.

Suggested List of Experiments/exercises: Suggested Case List:

Laboratory work will be based on above syllabus with minimum 07 experiments/exercises to be incorporated.

Suggested List of Experiments/Exercises:

Sr. No.	Name of Experiment/Exercise	Hours
1	Collection of Soil Samples & Standard Penetration Test: Collection of disturbed and undisturbed samples, Standard Penetration Test	04
2	Determination of Index Properties of Soil: Relative density test, Specific gravity test, Liquid limit test, Plastic limit test	06
3	Grain Size Analysis: Sieve analysis, Sedimentation analysis	04
4	Determination of Compressibility of Soil: Standard proctor test, Consolidation test	04
5	Determination of Permeability of Soil: Constant head permeability test, Falling head permeability test	02
6	Determination of Shear Strength of Soil: Unconfined compressive strength test, Direct shear test, Vane shear test, Triaxial compression test	
7	Computer Application in Geotechnical Engineering	02

