NIRMA UNIVERSITY School of Engineering, Institute of Technology Disciplinary Minor B.Tech. in Chemical Engineering Third Year/Semester V

Institute:	Institute of Technology
Name of Programme:	B. Tech. (Chemical Engineering)
Course Code:	3CH602DC24
Course Title:	Transport Phenomena
Course Type:	Core
Year of introduction:	2024-25

L	Т	Practical component				
		LPW	PW	W	S	
3	1	-	-	-	-	

Teaching hours

Course Learning Outcomes (CLOs):

At the end of the course, the student will be able to -

- 1. compare principle underlying between different transport phenomena. (BL4)
- 2. apply shell balance and boundary conditions for momentum transport (BL3) systems.
- 3. interpret shell balance for energy and mass transport systems (BL6)
- 4. solve chemical engineering problems along with appropriate (BL3) approximations and boundary conditions

Contents

		(Total 45)
Unit I	Principle of Transport Processes	
	Concept and industrial relevance, analogy between different transport	
	phenomena, equations of change for isothermal systems, equations of	
	continuity and motion. Molecular momentum transport, pressure and	
	temperature dependence of viscosity, viscosity prediction for gases,	
	liquids and mixtures, convective momentum transport.	
Unit II	Shell Momentum Balances and Velocity Distributions in Laminar	10
	Flow	
	Shell momentum balances and boundary conditions, flow of a falling	
	film, flow through circular tube, flow through annulus, flow of two	
	adjacent immiscible fluids, equations of continuity and motion.	
Unit III	Energy Transport	10
	Molecular energy transport, temperature and pressure dependence of	
	thermal conductivity, thermal conductivity prediction for gases, liquids,	
	solids and mixtures. Shell energy balances and boundary conditions,	
	heat conduction with an electrical heat source, nuclear heat source,	
	viscous heat source, composite walls, cooling fin, forced and free	
	convection.	
Unit IV	Mass Transport	10

Kinetic theory of diffusivity Molecular mass transport, temperature and pressure dependence of diffusivity, diffusivity prediction for gases and liquids. Shell mass balances and boundary conditions, diffusion through a stagnant gas film, diffusion with a homogeneous chemical reaction, diffusion with heterogeneous slow and instantaneous chemical reactions.

Self Study:

The self study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self study contents.

Tutorial Work:

Tutorial work will be based on the above content of course.

Suggested Readings/ References:

1. R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, Transport Phenomena, John Wiley & Sons, Inc.

2. Bodh Raj, Introduction to Transport Phenomena: Momentum, Heat & Mass, PHI Learning Private Limited.

3. Christie John Geankoplis, Transport Processes and Separation Process Principles, PHI Learning Private Limited.

L= Lecture, T=Tutorial, P= Practical, C=Credit