NIRMA UNIVERS ITY

Institute:	Institute of Technology
Name of Programme:	B. Tech. (Chemical Engineering)
Course Code:	2CH801CC23
Course Title:	Mathematics for Chemical Engineering
Course Type:	Core
Year of introduction:	2023-2024

L	Т	Practical component			С	
		LP W	P W	W	S	
2	1	-	-	-	-	3

Course Learning Outcomes (CLOs):

At the end of the course, the students will be able to –

1.	solve differential equations in the field of chemical engineering	(BL2)
2.	find solution of initial value problems using Laplace transformation	(BL2)
3.	apply numerical techniques to solve chemical engineering problems	(BL4)
4.	use finite difference method to solve differential equations	(BI 4)

4. use finite difference method to solve differential equations (BL4)

Syllabus: Total Teaching hours:30

Unit	Syllabus	Teaching hours
Unit I	Ordinary Differential Equations: Higher order linear	09
	differential equations with constant coefficient, Complementary	
	functions and particular integral, Method of variation of	
	parameters, Equations reducible to linear equations with a	
	constant coefficient (Cauchy's and Legendre's linear equations),	
	Simultaneous linear equations with constant coefficient,	
	Application in chemical engineering	
Unit II	Laplace Transforms: Definition, Linearity property, Laplace	06
	transforms of elementary functions, shifting theorem, Inverse	
	Laplace transforms, Laplace of differentiation and integration,	
	Convolution theorem, application of Laplace transforms in	
	solving ordinary differential equations, Laplace transforms of	
	periodic, Unit step, impulse, ramp and sinusoidal functions.	
Unit III	Numerical Methods: Solution of algebraic and transcendental	09
	equations by Bisection and Newton-Raphson iteration methods,	
	Finite differences, Interpolation, Finite difference operators,	
	Newton's forward interpolation, Newton's backward	
	interpolation, Lagrange's interpolation, Numerical	

differentiation, Numerical integration by Trapezoidal rule, Simpson's 1/3rd rule, Simpson's 3/8th rule

Unit IV Numerical Solutions of Differential Equations: Solution of first order differential equations: Taylor series method, Euler's method, 4th order Runge–Kutta method, Finite difference method to solve differential equations

Tutorial Works:

Tutorial work will be based on the above syllabus, with minimum 10 tutorials to be incorporated.

Self-Study:

Self-study contents will be declared at the commencement of the semester. Around $10\,\%$ of the questions will be asked from the self-study contents.

Suggested Readings/ References:

- 1. B. S. Grewal, Higher Engineering Mathematics, Khanna Publications.
- 2. S. C. Chapra and R. P. Canale, Numerical Methods for Engineers with Programming and Software Applications, McGraw-Hill Publications.
- 3. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley Eastern Publications.
- 4. M. K. Jain and S R K Iyengar Numerical Methods for Scientific & Engineering Computation, New age International Publication.
- 5. S C Gupta and V. K. Kapoor, Fundamentals of Mathematical Statistics: S Chand.
- 6. Jay I. Devore, Probability and Statistics for Engineers and Scientists; Pearson.