NIRMA UNIVERSITY

School of Engineering, Institute of Technology

B.Tech. in Chemical Engineering

Third Year /Semester VI

Institute:	Institute of Technology
Name of Programme:	B. Tech. (Chemical Engineering)
Course Code:	3CH502CC24
Course Title:	Modeling and Process Simulations
Course Type:	Core
Year of introduction:	2024-25

L	Т	Practical component			
		LPW	PW	W	S
3	-	2	-	-	-

Course Learning Outcomes (CLOs):

At the end of the course, student will be able to-

- 1. classify the structure of modular and equation-oriented mode simulators (BL4)
- 2. identify the partitions and tearing for the given flow diagram
- 3. build models for different unit operations in chemical engineering
- 4. apply various simulators for the simulation of the chemical processes (BL3)

Syllabus		Teachi
Unit I	Basic Concepts of Process Modeling	10017S 08
	General Aspects of Modelling and Process Simulation, Process	
	Synthesis and Process Analysis, Study and Applications of	
	Fundamental Laws, Introduction to Regression Analysis, Basics	
	of Various Numerical Methods.	
Unit II	Modeling of Chemical Engineering Systems	15
	Basics of Mass Balance, Energy balance for Non-Reactive	
	Systems, Energy Balance for Reactive Systems, Modelling of	
	Various Unit Operations like Absorber, Isotherms Mixtures,	
	Reactors etc., State Space Representation of the System of	
	Equations, Linearisation of Nonlinear Systems, Degree of	
	freedom Analysis of Various Unit Operations.	
Unit III	Modular and Equation Solving Approaches	12
	Modular Approach to Process Simulation, Equation-Solving	
	Approach, Structure of Modular and Equation-Oriented Mode,	
	Precedence-Ordering of Equation Set, Partitioning the	
	Flowsheet, Tearing Algorithms, Algorithms Based on the Signal	
	Flow Graph, Basic Tearing Algorithm, etc.	
Unit IV	Various Software/ Process Simulators	10
	Introduction to Mathematical Software, Introduction to Process	
	Simulators and Their Usage in Process Engineering.	

Self Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self study contents.

ng 45

(BL3)

(BL6)

Laboratory Work:

Laboratory work will be based on the above content of course.

Suggested Readings/References:

- 1. Luyben W. L., Process Modeling, Simulation and Control for Chemical Engineers, McGraw Hill Publication.
- 2. Ramirez W. F., Computational Methods for Process Simulation, Butterworth-Heinemann.
- 3. Biegler L. T., Grossman I. E., Westerberg A. W., Systematic Methods of Chemical Process Design, Prentice Hall Publication.
- 4. Babu B. V., Process Plant Simulation, Oxford Publication.

L= Lecture, T=Tutorial, P= Practical, C=Credit

List of Experiments:

Sr. No.	Practical	No. of Hours
1	To familiarise students with the basic of MATLAB/SCILAB	2
2	Write simple codes for solving chemical engineering models using MATLAB/SCILAB	2
3	Develop a model and solve the same using MATLAB	2
4	Solve ordinary differential equations with the help of MATLAB	2
5	To familiarise students with basic inputs required for steady-state simulations	2
6	Perform steady-state simulations of various basic unit operations part I	2
7	Perform steady-state simulations of basic unit operations- part II	2
8	Make students learn how to simulate different kinds of reactors in a process simulator	2
9	To familiarise students with various logical operators of a process simulator	2
10	Perform steady-state simulations of some simple flow sheet	2
11	Perform a process design of a multi-component distillation column	2
12	Perform Recycle Operations in a flowsheet	2