NIRMA UNIVERSITY School of Engineering, Institute of Technology **B.Tech. in Chemical Engineering Interdisciplinary Minor in Chemical Engineering Third Year /Semester VI**

Institute:	Institute of Technology		
Name of Programme:	B. Tech. (Chemical Engineering)		
Course Code:	3CH303IC24		
Course Title:	Reaction Engineering		
Course Type:	Core		
Year of introduction:	2024-25		

L	Т	Practical component			
		LPW	PW	W	S
3	-	2	-	-	-

Course Learning Outcomes (CLOs):

At the end of the course, the student will be able to –

- 1. interpret the process parameters for distillation and reaction systems (BL2)
- 2. analyse and interpret experimental data to obtain rate expressions (BL4)
- 3. select and design a suitable reactor for single and multiple (BL3) homogeneous reactions
- 4. comprehend the behaviour of various types of heterogeneous (BL2) contacting patterns and reactions

Total Teaching hours: 45

Syllabus:		Teaching hours
Unit I	Thermodynamics	15
	Introduction to Phase Equilibrium, fundamentals and calculations vapour-liquid equilibrium, applications of thermodynamics in process industries, heat of reaction basics, calculation of equilibrium constant, effect of temperature, pressure and composition of reaction equilibrium constants.	
Unit II	Kinetics of Homogeneous Reactions and Reactor fundamentals	12
	Introduction to chemical kinetics, classification of reactions, variables	
	affecting reaction rate, testing kinetic models, Arrhenius theory.	
	Integral, differential and half-life methods of analysis of data for	
	constant volume and variable volume cases, searching a rate equation	
Unit III	and mechanism to fit experimental data.	10
Unit III	Reactor Design for Single and Multiple Reactions Mass and energy balances for steady state and unsteady state reactors,	10
	batch reactor, plug flow reactor, mixed flow reactor and their	
	comparison. plug flow reactors in series, mixed flow reactors in series.	
Unit IV	Introduction to Heterogeneous Reactions and Catalysis	08
	Introduction to heterogeneous reactions and contacting patterns for two	
	phase systems. Concept of residence time distribution, compartment	
	model and dispersion model. Overview of physicochemical properties	

of catalyst, catalyst characterisation, deactivation and regeneration,

catalytic reactors.

Self Study:

The self study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self study contents.

Laboratory Work:

Laboratory work will be based on the above content of course.

Suggested Readings/References:

- 1. Levenspiel O., Chemical Reaction Engineering, Wiley Publications.
- 2. Fogler H S., Elements of Chemical Reaction Engineering, Prentice Hall Publications.
- 3. Smith J. M., Chemical Engineering Kinetics, McGraw-Hill Publications.

L= Lecture, T=Tutorial, P= Practical, C=Credit

List of Experiments:

Sr.	Practical	No. of
No.		Hours
1	Study effect of concentration in Batch reactor	2
2	Determine activation energy and frequency Factor	2
3	Validation of pseudo first order reaction	2
4	Study of effect of multiple CSTR in series	2
5	Study effect of concentration in PFR	2
6	Study of effect of recycle ratio in PFR	2
7	Reaction kinetic studies in a plug flow reactor	2
8	RTD studies in continuous stirred tank reactor	2
9	RTD studies in plug flow reactor	2
10	Catalyst preparation by wet impregnation method	2
11	Combustion characteristics of coal particles	2