NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	B. Tech. in Electrical Engineering
Semester:	III
Course Code:	2EE302
Course Title:	Digital Electronics
Course Type:	Core
Year of Introduction:	2023 - 24

L	Т	Practical component				С
		LPW	PW	W	S	
2	0	2	-	-	-	3

Course Learning Outcomes (CLOs):

At the end of the course, the students will be able to -

- 1. Illustrate digital integrated circuits and characteristics
- 2. make use of logic devices and design circuits based on the logic
- 3. design and troubleshoot broad range of combinational and sequential circuits (BL4)
- 4. select and use Analog to Digital and Digital to Analog converters different applications

(BL5)

05

(BL2)

(**BL4**)

Syllabus:

Unit-1 Introduction

Number systems - Binary, hexadecimal, their conversion, representation of signed numbers and binary arithmetic in computers, weighted and non-weighted binary codes, BCD code, alphanumeric codes, Logic Gates - AND, OR, NOT, NAND, NOR X-OR and X-NOR, Boolean algebra, 7400 series (TTL) and 4000 Series (CMOS) integrated circuits, memory in computer system, memory types & terminology.

Unit-2 Karnaugh Map

Expression of Boolean function to SOP and POS forms, two, three and four variable Karnaugh map, merging & minimization of SOP & POS expressions, don't care combinations, five & six variable Karnaugh map.

Unit-3 Combinational Circuits

The half and full adder, the half & full subtractor, parallel binary adders, the looks ahead carry adders, subtraction using parallel adders. BCD adders, code converters, parity bit generators/checkers, decoders, display devices, encoders, multiplexers, demultiplexers.

Unit-4 Sequential Circuits

S-R latch, gated latches, edge triggered S-R flip flop, J-K flip flop, D flip flop, T flip flop. flip flop operating characteristics, master – slave flip flops, application of flip flops, Buffer registers, controlled buffer register, 3-state buffer register, data transmission in shift register, serial in - serial out and parallel in - parallel out shift register, bi-directional shift register, application of shift register, asynchronous and synchronous counters, design and applications of counters.

Unit-5 Logic Families

Digital IC specification terminology, logic families: RTL, DTL, TTL, I2L, ECL & CMOS, TTL sub families, open collector gates, CMOS sub families, interfacing

Teaching Hours: 30

07

03

07

03

TTL to CMOS, interfacing ECL to other logics, applications.

Unit-6 Analog to Digital and Digital to Analog Converters

Digital to analog conversion, R-2R ladder type DAC, weighted resistor type DAC, the switched current source type DAC, counter type A/D converter, dual slope type A/D converter, successive approximation type A/D converter, applications.

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

This shall consist of at least 10 practical / simulations based on the above syllabus.

Suggested Reading:

- 1. Morris Mano, Textbook of Digital Logic and Computer Design, Pearson Education.
- 2. Bignell and Donovan, Textbook of Digital Electronics, Delmar (Thomson) Publication.
- 3. Charles Roth Jr., Larry Kinney, Raghunandan G. H., Analog and Digital Electronics, Cengage
- 4. A. Anandkumar, Textbook of Fundamentals of Digital Circuits, PHI Publication.
- 5. R.P. Jain, Textbook of Modern Digital Electronics, TMH Publications.
- 6. Anil K. Maini, Digital Electronics: Priniciples and Integrated Circuits, Wiley

Suggested List of Experiments (not restricted to the following): (Only for Information)

Title of Experiment	Hrs.
Realization and implementation of BCD parallel adder	2
Testing of parity generator (IC 74180) and realization of 8-bit parity checker	2
Analyze 8-to-1 line multiplexer and realize a Boolean function	4
Analyze digital demultiplexer (IC 74138) and realize full adder	4
Design BCD to seven-segment decoder	2
Verify truth tables of RS, JK, D and T flip-flops	2
Design and realization of binary ripple counter	2
Design and realization of modulo 10 binary synchronous counter using J-K flip-flops	2
Realization of binary shift register	2
Realization of digital to analog converter	2
	Realization and implementation of BCD parallel adder Testing of parity generator (IC 74180) and realization of 8-bit parity checker Analyze 8-to-1 line multiplexer and realize a Boolean function Analyze digital demultiplexer (IC 74138) and realize full adder Design BCD to seven-segment decoder Verify truth tables of RS, JK, D and T flip-flops Design and realization of binary ripple counter Design and realization of binary ripple counter Design and realization of modulo 10 binary synchronous counter using J-K flip-flops Realization of binary shift register

L = Lecture, T = Tutorial, P = Practical, C = Credit

w.e.f. academic year 2023 - 24 and onwards

05