NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	B. Tech. in Electrical Engineering
Semester:	III
Course Code:	2EE502
Course Title:	Network Analysis
Course Type:	Core
Year of Introduction:	2023 – 24

L	Т	Practic	С			
		LPW	PW	W	S	
2	0	2	-	-	-	3

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. apply basic laws, methods and theorems for analysing electrical circuits (BL3)
- 2. determine the transient and steady-state response of electrical circuits (BL5)
- 3. utilize Laplace transform and Fourier analysis to solve electrical circuits (BL2)
- 4. analyse and simplify two-port networks using their properties and interrelationships (BL4)

Syllabus:

Teaching Hours: 30

Circuit Fundamentals 04 Unit-1 Mesh and Nodal Analysis - Super-mesh and Super-Node Analysis with independent and dependent sources, Duality, Tuned circuits. Unit-2 **Network Theorems** 05 Superposition, Thevenin's, Norton's, Maximum power transfer, Tellegen's, Millman's and Reciprocity theorem in DC and AC circuits. Unit-3 05 **Time Domain Analysis** Steady state analysis, initial conditions, procedure for evaluating initial conditions, transient analysis of DC & AC circuits, revisiting concept of phasors. Unit-4 **Laplace Analysis** 06 Laplace transform of standard signals, Shifting theorem, initial and final value theorem, solution of circuit equations by Laplace transform, evaluation of circuit response for various signals. Unit-5 05 **Fourier Analysis** Fourier series, evaluation of Fourier coefficients, Fourier transform and its properties, Fourier techniques applied in electrical networks. Unit-6 **Network Function and Two Port Networks** 05 Driving point functions, transfer functions, classification of networks, two port parameters (Z, Y, ABCD, h), condition of reciprocity and symmetry, interrelations between different parameters and interconnections of various networks.

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

This shall consist of at least 10 practical / simulations based on the above syllabus.

Suggested Readings:

- 1. M E Van Valkenburg, Textbook of Network Analysis, Prentice Hall India.
- 2. A. Chakrabarti, Circuit Theory- Analysis and Synthesis, Dhanpat Rai & Co.
- 3. U. A. Patel, Textbook of Network Analysis and Synthesis, Mahajan Publishing House.
- 4. Akhilesh A. Nimje, Electrical Circuit Analysis and Synthesis, New Age International Publishers
- 5. William D. Stanley, Textbook of Network Analysis with Applications, Pearson Education (I) Ltd.
- 6. Franklin F. Kuo, Textbook of Network Analysis and Synthesis, Wiley India.
- 7. Lawrance P. Huelman, Textbook of Basic Circuit Theory, Prentice Hall of India.
- 8. Alan V. Oppenheim, Alan S. Willsky, S. Hamid Nawab, Signals and Systems, Pearson Education.
- 9. Alkin Oktay, Signals and Systems, CRC press.
- 10. A.Anand Kumar Signals and Systems PHI Publication
- 11. A.Nagoor kani Signals and Systems, Tata McGraw-Hill Education

Suggested List of Experiments (not restricted to the following): (Only for Information)

	Title of Experiment	Hrs.
1.	To verify Norton's and Thevenin's theorem.	2
2.	To verify Superposition's and Tellegen's theorem.	2
3.	To verify Maximum power transfer theorem.	2
4.	To determine the Z and Y- parameters of a two-port resistive network.	2
5.	To determine the h and g- parameters of a two-port resistive network.	2
6.	To determine the ABCD parameters of a two-port resistive network and .their cascade connection.	2
7.	To study the response in R-L-C series circuit and determine various time response specifications.	4
8.	To study the time response of First-order RL and RC circuits using MATLAB.	2
9.	To study the frequency Response of Second-order RLC circuits.	2
10.	To design filter circuits and measure its cut-off frequency.	4

L = Lecture, T = Tutorial, P = Practical, C = Credit

w.e.f. academic year 2023 - 24 and onwards