NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	B. Tech. in Electrical Engineering
Semester:	IV
Course Code:	2EE503
Course Title:	Microprocessor and Microcontrollers
Course Type:	Core
Year of Introduction:	2023 - 24

L	Т	Practical component				С
		LPW	PW	W	S	
2	0	2	-	-	-	3

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to –

- 1. interpret the architecture of 8085 microprocessor and 8051 microcontroller. (BL2)
- 2. develop algorithm/program of the microprocessor and microcontrollers for an application. (BL6)
- 3. apply the knowledge of peripheral devices for real-world applications. (BL3) (BL2)
- 4. infer the architecture of advanced microcontrollers.

Syllabus:

Unit-1 Microprocessor, architecture and programming

Introduction and history of microprocessor, 8085 microprocessor architecture and pin diagram, instructions and addressing mode, programming techniques.

Unit-2 MCS51 microcontroller architecture and programming

Introduction, 8051 microcontroller internal architecture, I/O pins, ports, counters, timers, interrupts, serial data input/output, special function registers, internal memory organization, Programming of 8051 in assembly and C language, timing diagrams, data types and time delay in 8051, I/O programming, serial port programming, timer programming, interrupts programming.

Unit-3 **Applications of 8051** ADC, DAC, sensor interfacing, microprocessor-based relay applications, LCD interfacing, keyboard interfacing, dc motor interfacing, 8051 interfacing to external memory, embedded C programming for different applications.

Unit-4 **Advanced Microcontrollers** CISC Vs RISC design philosophy, Von-Neumann vs Harvard architecture, Concept of pipelining, Introduction to ARM processors and its architecture

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

This shall consist of at least 10 practical / simulations based on the above syllabus.

Teaching Hours: 30

13

06

06

05

Suggested Reading:

- 1. R. S. Gaonkar, Microprocessor Architecture, Programming and Applications with 8085, Penram International Publications
- 2. K. J. Ayala, The 8051 Microcontroller Architecture, Programming and Applications, Penram International Publications.
- 3. Mazidi and Mazidi, 8051 Microcontroller and Embedded system, Pearson Publications.
- 4. B. Ram, Fundamentals of Microprocessors and Microcontrollers, Dhanpat Rai Publishing Co.
- 5. R. S. Kaler, A Textbook of Microprocessors and Microcontrollers, I. K. International Publishing house.
- 6. Steve Furber, ARM System-on-Chip Architecture, Pearson Education Limited
- 7. Andrew N Sloss, Dominic Symes, Chris Wright, ARM System Developer's Guide: Designing and Optimizing System Software, Morgan Kaufmann Publishers
- 8. Hall D V, Microprocessors & Interfacing, McGraw Hill

Suggested List of Experiments (not restricted to the following): (Only for Information)

	Title of Experiment	Hrs.
1.	To apply the data transfer instructions of 8085 microprocessor.	2
2.	To apply the arithmetic and logical instructions of 8085 microprocessor.	2
3.	To apply branching instructions of 8085 microprocessor.	2
4.	Assembly language programming using subroutine technique.	2
5.	Introduction to Keil software for assembly and C programming of 8051 microcontroller.	2
6.	To apply data transfer instructions of 8051 microcontroller.	2
7.	To apply arithmetic and logical instructions of 8051 microcontroller.	2
8.	To apply branching instructions of 8051 microcontroller through assembly language	2
	programming.	
9.	To apply branching instructions of 8051 microcontroller through C programming.	2
10.	. Timer programming of 8051 microcontroller using Keil.	2
11.	. Interfacing of LED and LCD display control using 8051 microcontroller with the help	2
	of assembly and C programming.	
12.	. Interfacing of ADC and DAC with 8051 microcontroller.	2

L = Lecture, T = Tutorial, P = Practical, C = Credit

w.e.f. academic year 2023 - 24 and onwards