NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	B. Tech. in Electrical Engineering
Semester:	V
Course Code:	3EE501ME24
Course Title:	Advanced Measurement and Instrumentation
Course Type:	Department Elective-I
Year of Introduction:	2024 – 25

L	Т	Practical component				С
		LPW	PW	W	S	
3	0	2	-	-	•	4

Course Learning Outcomes (CLOs):

At the end of the course, the students will be able to –

- 1. acquire knowledge on working and application of transducers and actuators (BL3)
- 2. select different measuring instruments as per the requirement (BL5)
- 3. comprehend the concept of data acquisition (BL4) (**BL4**)
- 4. analyse circuits used in signal conditioning and telemetry

Contents:

Unit-1 **Transducers & Actuators**

Classification of transducers and actuators, hall-effect transducers, piezo-electric transducers, photo-electric transducers, vibration transducers, stepper motor, servo motor, solenoids, bimetallic strip, torque sensors, flux measurement, optical sensors and other non-contact measurements

Unit-2 **Measuring Instruments**

MSO, DSO, Network Analysers, trivector meter, dielectric constant measurement, spectrum analyser, harmonic distortion analysers, Digital frequency meter, smart energy meter, analog and digital multimeter, power analyser, signal generator, probes, Tan δ , ratio meters, programmable power supplies

Unit-3 **Data Acquisition**

Data Acquisition system – basic components, single channel and multi-channel data acquisition system, digital input and output systems, data logging, general purpose interface bus (GPIB) instruments, sample and hold circuits, applications - CAN, USB, PCI express, communication buses for instrument controls, LAN, Ethernet

Unit-4 Signal Conditioning & Telemetry Signal conditioning, instrumentation amplifiers, op-amp based 1st order and 2nd order filters, 4-20 mA signal transmission and current loop, data transmission and telemetry, Introduction to LabView

Teaching Hours: 45

10

08

16

11

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

This shall consist of at least 10 practical/simulation based on the above Contents.

Suggested Reading:

- 1. E. W. Golding and F. C. Widdis, Electrical & Electronic Measurements & Instrumentation, Reem Publications Pvt. Ltd
- 2. A. K. Sawhney, A course in Electrical Measurement and Measuring Instruments, Dhanpat Rai & Sons, New Delhi. William Brogan, Modern Control Theory, Pearson Publications
- 3. B. G. Liptak, Instrument Engineer's Handbook Vol-2, CRC Press
- 4. A. D. Helfrick and W. D. Cooper, Modern Electronic Instrumentation and Measurement Techniques, Prentice Hall India
- 5. E. O. Doeblin, Measurement systems: Application & Design, McGraw-Hill Professional
- 6. D. Patranabis, Principles of Industrial Instrumentation, Tata Mcgraw Hill

Suggested List of Experiments (not restricted to the following): (Only for Information)

	Title of Experiment	Hrs.
1.	To measure and visualize current and voltage using a hall-effect sensor.	2
2.	To analyse on-off control using thermoelectric sensors.	4
3.	To perform harmonic analysis of a.c. line current in a three-phase system.	2
4.	To measure various power components and power indices using trivector meter and power analysers.	4
5.	To realize the importance and applicability of various probes used with digital storage oscilloscopes.	2
6.	To import and export waveform and data points using digital storage oscilloscope.	2
7.	To implement various op-amp based filters for signal conditioning.	2
8.	To implement V-I and I-V converters for signal conditioning.	2
9.	To realize and implement basic data acquisition system using data loggers.	2
10.	To perform and test automation using LabView.	2

L = Lecture, T = Tutorial, P = Practical, C = Credit

w.e.f. academic year 2024 - 25 and onwards