Nirma University | Institute: | Institute of Technology, School of Engineering | | | |-----------------------|--|--|--| | Name of Programme: | B.Tech. in Electrical Engineering | | | | Semester: | VII | | | | Course Code: | 4EE203ME25 | | | | Course Title: | Smart Grid | | | | Course Type: | Department Elective-III | | | | Year of Introduction: | 2025 – 26 | | | | _ | T | Practi | cal Co | mpon | ent | C | |---|---|--------|--------|------|-----|---| | L | 1 | LPW | PW | W | S | | | 3 | 1 | 0 | - | - | - | 4 | # **Course Learning Outcomes (CLOs):** At the end of the course, students will be able to – monitoring, power quality audit | 1. | recognize the concept of smart grid and its advantages over conventional grid | (BL3) | |----|---|-------| | 2. | assess the automation in smart grid and compare the techniques | (BL4) | | 3. | appraise various sensing technologies, networking and communication | (BL3) | | | technologies involved with the smart grid | | | 4. | evaluate the power quality problems associated with the integration of | (BL5) | | | renewable energy sources in smart grid | | | Unit | Contents | | |-----------------|---|---------------------| | Unit-I | Introduction | (Total 45) | | | Evolution of electric grid, conventional electrical networks, motives
behind developing the smart grid network, definitions, characteristics
and benefits of the smart grid, present grid versus smart grid, functions
of smart grid components, key challenges for smart grid, present
development and international practices in smart grid | | | Unit-II | Smart Grid Measurement and Automation | 10 | | | Wide Area Monitoring Systems (WAMS), Phasor Measurement Units (PMU), smart meters – key components of smart metering, smart appliances, Advanced Metering Infrastructure (AMI), GIS and Google Mapping Tools. Intelligent Grid Automation, substation automation equipment, home and building automation | | | Unit-III | Smart Grid Communication Technologies | 10 | | | Classification of power system communication according to their functional requirements, communications infrastructure and protocols for smart metering, smart grid communication technologies – wireless and wired. Basics of Cloud Computing, cyber-attacks and power system security, smart grid cyber security | | | Unit-IV | Power Quality Management in Smart Grid | 08 | | | Power Quality & Electromagnetic Compatibility (EMC) in smart grid, power quality issues of grid connected renewable energy sources, power quality conditioners for smart grid, web based power quality | | #### **Unit-V** Smart Grid Systems 12 Renewable energy resources, sustainable energy options for the smart grid, issues associated with sustainable energy technology, electric vehicles and Plug-in Hybrids, impact of PHEV on the grid, environmental implications – climate change, implications of climate change. Smart switchgear, digital substations, reclosure systems. Storage technologies, benefits of Energy Storage Systems (ESS) #### **Self-Study:** The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents. #### **Tutorial Work:** This shall consist of at least 6 tutorials based on the above syllabus. ### **Suggested Reading:** - 1. Salman K. Salman, *Introduction to the Smart Grid: Concepts, Technologies and Evolution*, The Institution of Engineering and Technology (IET). - 2. Janaka Ekanayake, Kithsiri Liyanage, Jianzhong Wu, Smart Grid: Technology and Applications, John Wiley & Sons. - 3. James Momoh, Smart Grid: Fundamentals of Design and Analysis, John Wiley & Sons, IEEE Press - 4. Clark W. Gellings, *The Smart Grid, Enabling Energy Efficiency and Demand Response*, CRC Press. - 5. Ali Keyhani, Design of smart power grid renewable energy systems, Wiley IEEE - 6. Relevant recent literature, journal articles, standards and codes