Nirma University

Institute:	Institute of Technology, School of Engineering	
Name of Programme:	B. Tech. in Electrical Engineering	
Semester:	VII	
Course Code:	4EE304ME25	
Course Title:	Power Quality and Custom Power Devices	
Course Type:	Department Elective-IV	
Year of Introduction:	2025 – 26	

L	Т	Practical Component				
		LPW	PW	W	S	
3	0	2	-	_	_	4

Course Learning Outcomes (CLOs):

At the end of the course, the students will be able to -

At the cha of the course, the stadents will be able to -	
1. analyse the effects of poor power quality	(BL4)
2. investigate the current and voltage harmonics with required so	olution (BL5)
3. select a suitable custom power device for enhancing power qua	ality (BL4)
4. design appropriate power quality improvement device based or	on need of (BL6)
application	

Unit	Contents	Teaching hours (Total 45)
Unit-I	Introduction	06
	Overview of power quality – concern about the power quality – general classes of power quality and voltage quality problems – transients – long–duration voltage variations – short–duration voltage variations – voltage unbalance – Waveform distortion – voltage fluctuation – power frequency variations	00
Unit-II	Voltage Imperfections in Power Systems	08
	Power quality terms – voltage sags – voltage swells and interruptions – sources of voltage sag, swell and interruptions – nonlinear loads – IEEE and IEC standards, source of transient over voltages – principles of over voltage protection – devices for over voltage protection – utility capacitor switching transients	

102
.cademics - I\Divy-Academics\NOTIFICATIONS\1 - ACAD-COUN\53-Noti - AC - 170924\Noti - - 3(B) - 4_IT_BT-EE - TES_Syllb -VII_VIII (encl-

Unit-III **Harmonic Distortion and Solutions** 09 Voltage distortion vs. current distortion – harmonics vs. transients – harmonic indices - sources of harmonics - effect of harmonic distortion – impact of capacitors, transformers, motors and meters – point of common coupling - passive and active filtering numerical problems **Passive Power Compensators** Unit-IV 09 Principle of operation of passive shunt and series compensators, analysis and design of passive shunt compensators simulation and performance of passive power filters- limitations of passive filters, parallel resonance of passive filters with the Supply System and Its mitigation, fundamentals of load compensation – voltage regulation & power factor correction Unit-V **FACTS** 07 Introduction, need of FACTS devices in power system, types of compensation techniques, various FACTS controllers, different FACTS devices like TCSC, TCSR, SVC etc., advantages & disadvantages, SSSC, The UPFC, comparative evaluation of different FACTS controllers, future direction of FACTS technology Unit-VI **Custom Power Devices** 06 Active filters, DSTATCOM – DVR Structure – rectifier supported

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10 % of the questions will be asked from self-study contents.

DVR - DC capacitor supported DVR -unified power quality

Laboratory Work:

conditioner

This shall consist of at least 08 laboratory experiments / simulations based on the syllabus.

Suggested Reading:

- 1. R. C. Duggan, Electric Power Systems Quality, Tata MC Graw Hill Publishers
- 2. J. Arrillga, Power System Harmonics, John Wiley and Sons
- 3. Derek A. Paice, Power Electronic Converter, Harmonics IEEE Press
- 4. Bhim Singh, Ambrish Chandra, Kamal Al-Haddad, *Power Quality Problems & Mitigation Techniques*, Wiley
- 5. R. Sastry Vedam, Mulukulta S Sarma, Power Quality VAR Compensation in Power Systems, CRC Press
- 6. Narain G. Hingorani, Understanding FACTS: Concepts & Technology of Flexible AC Transmission Systems, Wiley India Pvt. Ltd.
- 7. C. Sankaran, Power Quality, CRC press
- 8. T. K. Nagsarkar and M. S. Sukhija, Power System Analysis, Oxford University Press
- 9. Francisco C. De La Rosa, Harmonics and Power Systems, CRC Press

Suggested List of Experiments:

Sr	. Name of Experiments/Exercises	Hours
No).	
1.	Impact of sag and swell on source and load using ac programmable source/simulation	02
2.	Simulation and analysis of current harmonics and voltage harmonics generated by non-leaner load.	02
3.	Simulation of passive shunt and series compensators	04
4.	Design and simulation of passive tuned filter for 5 th and 7 th current harmonics elimination	04
5.	Design and simulation analysis of Thyristor-Controlled Series Capacitor (TCSC)	02
6.	Design and simulation analysis of Thyristor-Controlled Series Reactor (TCSR)	02
7.	Design and simulation shunt active filter	04
8.	Design and simulation of Dynamic Voltage Restorer (DVR)	04