NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY

M.Tech. in Electronics & Communication Engineering (VLSI Design)

M.Tech. Semester - II Department Elective II

L	Т	Practical component				C
	•	LPW	PW	W	S	
3	-	-	-	-	-	3

Course Code	3EC12D201
Course Title	IC Fabrication Technology

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. Comprehend use of materials and parameters involved in the wafer preparation.
- 2. Illustrate and list the processes involved in fabrication of VLSI circuits.
- 3. Visualize the complete VLSI fabrication flow from wafer preparation to packaging.

Syllabus: Teaching Hours:		
CI: Crystal Growth and Wafer Preparation uction, electronic grade silicon, material properties, crystal growth, silicon shaping,		
TII: Epitaxy uction, wafer-phase epitaxy, molecular beam epitaxy, silicon on insulator, epitaxial	UNIT I	
TIII: Oxidation oxides, peroxidation cleaning, dry and wet oxidation, high pressure oxidation, oxidation ysilicon, oxidation induced defects	Thin oxi	
TIV: Lithography graphy techniques: optical lithography, electron beam lithography, ion beam raphy, comparisons of lithography techniques	Lithogra	
CV: Doping, Diffusion and Ion Implantation g technology, Deposition of films using chemical vapour deposition (CVD), Low are chemical vapour deposition LPCVD and Sputtering Techniques, ion implantation ques	Doping	
on, self-alignment, metallization, NMOS IC technology, CMOS IC technology, accement in IC fabrication technology including 3D IC	UNIT V Isolation	
CVII: Packaging ge types, packaging design consideration, package fabrication technology, advanced	UNIT V	

Self-Study:

The self-study contents will be declared at the commencement of Semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings:

- 1. S. M. Sze, VLSI Technology, Second Edition, McGraw-Hill
- 2. S. K. Gandhi, VLSI Fabrication Principles, Second Edition, John Wiley & Sons
- 3. James Plummer, M. Deal and P.Griffin, Silicon VLSI Technology, Prentice Hall Electronics and VLSI series.