Institute:	Institute of Technology			
Name of Programme:	B.Tech. Electronics & Communication Engineering			
Course Code:	2EC402			
Course Title:	Digital Signal Processing			
Course Type:	(■ Core/ □ Value Added Course/ □ Departmental Elective/			
	☐ Institute Elective/ ☐ University Elective/ (☐ Open Elective			
	Any other)			
Year of Introduction:	2023-24			

Credit Scheme

L	T	Practical component			C	
		LPW	PW	W	S	
2	-	2	-	-	-	3

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to

- 1. characterise an LTI system using z-transform through pole-zero analysis BL 4
- 2. compute DFT using FFT to interpret spectral characteristics of BL 2 one-dimensional signals.
- design IIR and FIR digital filters for the given practical specifications and analyse the finite word-length effect on a designed filter.
- 4. realise digital filter structures for IIR and FIR systems

 BL 3

Unit No.	Syllabus	Teaching hours
I	Discrete Time Fourier Transform (DTFT) and Discrete Fourier	
	Transform (DFT): Definition and properties/theorems of DTFT and DFT, frequency response, DFT symmetry relations, Circular shifting and circular convolution in DFT, Linear convolution using DFT, Applications of DFT, FFT algorithm	08
II	Z Transform and LTI Discrete-time Systems in the Transform	
	Domain: Definition and properties, ROC, The inverse-z transform, the transfer function, Effect of the pole and zero of rational z-transform on the overall response, simple digital filters (LPF, HPF, BPF, Notch), Linear Phase digital filters, Complementary transfer functions, Inverse Systems, System identification, Comb filter	08
III	IIR and FIR Digital Filter Design: IIR filter design methods, FIR filter design methods, computationally efficient FIR filter design	05
IV	Digital Filter Structures: Basic FIR and IIR filter structures, Polyphase structure, Analysis of finite word-length effect in filter structure design	03
V	Signal Processing Applications: Spectrum Analysis and Estimation, Echo cancellation, Signal Compression	03
VI	DSP Processors:	
	DSP Processor Architecture: modified Harvard, VLIW, multiply & accumulate,, data address generator circular buffering, bit reverse addressing mode, zero nested loop, barrel shifter, dual port memory, special purpose high performance interfaces	03

Self Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions v be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

List of Experiments:

MATLAB / C / C++/ Python/ Scilab/Octave/DSP Kit Programming based Experiments to realise following DSP Concepts

Sr. No.	Title of the experiment	Teaching Hours
1	Apply the linear convolution, autocorrelation, and cross-correlation for given signals for different applications.	02
2	Compute Discrete-Time Fourier Transform (DTFT) of given time domain sequence and interpret frequency response.	02
3	Compute Discrete-Time Fourier Transform (DTFT) of given time domain sequence and interpret frequency response.	02
4	Compute Discrete Fourier Transform (DFT) of given time domain sequence and illustrate the concept of frequency resolution.	02
5	Realize Discrete Fourier Transform (DFT) using Fast Fourier Transform (FFT) algorithm and highlight the saving in computations.	04
6	Demonstrate the importance of pole-zero plots in analysis of digital systems. Further, identify magnitude response through pole-zero locations.	04
7	Design simple digital IIR filters for given specifications.	02
8	Design digital FIR filters using window methods.	04
9	Design digital IIR filters and compare Butterworth, Chebyshev-1, Chebyshev-2, and elliptical responses.	02
10	Realise Least-Mean-Square filter for adaptively remove noise in the given signal.	04
11	Illustrate the process to remove echo and reverberation effect from audio signals.	04
12	Realise linear predictive coding algorithm for speech processing.	04
13	Generate Dual Tone Multi-Frequency (DTMF) signal and detect using Goertzel algorithm.	04
14	Show that Discrete Cosine Transform (DCT) can be effectively used for signal compression algorithms.	04
15	Digital Filter Implementation using Digital Signal Processor (DSP) Kit.	04

Suggested Readings:

- 1. Sanjit K. Mitra, Digital Signal Processing, Tata McGraw Hill
- 2. Oppenheim, Schafer, Discrete-Time Signal Processing, Buck Pearson Education Publication
- 3. Emmanuel Ifeachor and Barrie Jervis, Digital Signal Processing: A Practical Approach, Pearson Education, India
- 4. Proakis, Manolakis, Digital Signal Processing: Principles, Algorithm & Digital Signal Processing: Principles, P
- 5. Vinay K. Ingle, John G. Proakis, Brooks Cole, Digital Signal Processing Using MATLAB, Thomson Learning