NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY

M. Tech. in Electronics and Communication Engineering (Embedded System)

M.Tech. Semester - II Department Elective II

L	T	Practical component				
		LPW	PW	W	S	
3	-	-	-	-	-	3

Course Code	36EC270
Course Title	Cyber Physical Systems

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. Address challenges in implementing a cyber-physical system from a computational perspective.
- 2. Integrate real valued and dense time real time systems with software based discrete automated control.
- 3. Design and validate problems for Cyber Physical Systems using formal methods, safety assurance and security aspects.

Syllabus: Teaching Hour	rs:45
UNIT I: Introduction to Cyber-Physical Systems	05
Cyber-Physical Systems (CPS) in the real world, Basic principles of design and validation of	
CPS, Industry 4.0, AutoSAR, IIOT implications, Building Automation, Medical CPS	
UNIT II: CPS - Platform components	06
CPS HW platforms - Processors, Sensors, Actuators, CPS Network - Wireless Hart, CAN,	
Automotive Ethernet, CPS Sw stack - RTOS, Scheduling Real Time control tasks	
UNIT III: Principles of Automated Control Design	08
Basic control theory, Dynamical Systems and Stability, Controller Design Techniques,	
Stability Analysis: CLFs, MLFs, stability under slow switching, Performance under Packet	
drop and Noise, Tutorial: MATLAB toolboxes - Simulink, Stateflow	
UNIT IV: CPS Implementation	07
Features, software components, Mapping software components to ECUs, CPS Performance	
Analysis - effect of scheduling, bus latency, sense and actuation faults on control	
performance, network congestion, Control, Bus and Network Scheduling using True time	
UNIT V: Formal Methods for Safety Assurance of Cyber-Physical Systems	07
Advanced Automata based modeling and analysis, Basic introduction and examples, Timed	
and Hybrid Automata Formal Analysis, Flow pipe construction, reachability analysis,	
Analysis of CPS Software, Weakest Pre-conditions, Hybrid Automata Modeling, Flow pipe	
construction using SpaceX and Phaver tools CPS SW Verification, Frama-C, CBMC	
UNIT VI: Secure Deployment of CPS	07
Attack models, Secure Task mapping and Partitioning, State estimation for attack detection,	
Case study - Vehicle ABS hacking, Power Distribution, and Attacks on Smart Grids	
UNIT VII: CPS Case studies and Tutorials	05
Automotive: SW controllers for ABS, ACC, Lane Departure Warning, Suspension Control,	
Healthcare: Artificial Pancreas/Infusion Pump/Pacemaker, Green Buildings: automated lighting,	
AC control	
Self-Study:	

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings:

- 1. E. A. Lee, Sanjit Seshia, Introduction to Embedded Systems A Cyber–Physical Systems Approach , MIT Press
- 2. Rajeev Alur, Principles of Cyber-Physical Systems, MIT Press