NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY M. Tech. in Electronics and Communication Engineering (Embedded System) M.Tech. Semester - II

Department Elective II

L	Т	Practical component				
		LPW	PW	W	S	
3	-	-	-	-	-	3

Course Code	6EC271
Course Title	Hardware Security

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. Identify and analyze vulnerabilities in Digital Logic Design and its solution using Crypto Algorithms.
- 2. Analyze physical and side-channel attacks and provide solution for its countermeasures.
- 3. Analyze and design secured cryptographic Hardware using trusted Trojan detection mechanism, trusted IC and FPGA implementation of crypto hardware.

Syllabus:

•	
UNIT I: Introduction to Crypto Algorithms Cryptography basics, Cryptographic algorithms - Symmetric Key algorithms, Public Key algorithms and Hash Algorithms, Data Encryption Standards, Advanced Encryption	10
Standards, RSA, BowFish .	
UNIT II: Design Intellectual Property Protection	08
Introduction to IP Protection, Watermarking Basics, Watermarking Examples, Good	00
Watermarks, Fingerprinting, Hardware Metering.	
UNIT III: Physical Attacks and Modular Exponentiation	06
Physical Attacks (PA) Basics, Physical Attacks and Countermeasures, Building Secure	
Systems, Modular Exponentiation (ME) Basics, ME in Cryptography, ME Implementation	
and Vulnerability, Montgomery Reduction.	
UNIT IV: Side Channel Attacks and Counter Measures	06
Introduction to Side Channel Attacks, Memory Vulnerabilities and Cache Attacks, Power	
Analysis, More Attacks and Countermeasures, Modified Modular Exponentiation.	
UNIT V: Hardware Trojan Detection and Trusted IC Design	05
Hardware Trojan (HT) and Trusted IC. Hardware Trojan Taxonomy. Hardware Trojan	
Detection Overview, Hardware Trojan Detection Methods, Trusted IC Design with HT	
Prevention.	
UNIT VI· Emerging Technologies	10
FPGA Implementation of Crypto algorithms. Vulnerabilities and Countermeasures in FPGA	10
Systems Pole of Hardware in Security and Trust Physical Unclonable Functions (PUF)	
systems, Note of fiatuwate in security and flust, flysteat Onetonable Functions (FOF)	

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Suggested Readings:

Basics, Reliability, Trust Platform Modules

- 1. Debdeep Mukhopadhyay and Rajat Subhra Chakraborty, Hardware Security: Design, Threats, and Safeguards, CRC Press.
- 2. Tehranipoor, Mohammad, Wang, Introduction to Hardware Security and Trust, Springer.
- 3. Ted Huffmire, Handbook of FPGA Design Security, Springer.
- 4. Stefan Mangard, Elisabeth Oswald, Thomas Popp, Power Analysis Attacks Revealing the Secrets of Smart Cards, Springer.
- 5. Doug Stinson, Cryptography Theory and Practice, CRC Press.

Teaching Hours:45