NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY M. Tech. in Electronics and Communication Engineering (Embedded System) M.Tech. Semester - II

Department Elective III

L	Т	Practical component				С
	I	LPW	PW	W	S	
2	-	2	-	-	-	3

Course Code	6EC277
Course Title	High Performance Computing

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- Comprehend parallel processing mechanism and analyze the issues related with the High 1. Performance Computing.
- 2. Program graphics processor using CUDA.
- Propose Power aware computing and communication for high performance computing. 3.

Syllabus:

UNIT I: Parallel Processing Concepts

Levels of parallelism - instruction, transaction, task, thread, memory, and function, Models - SIMD, MIMD, SIMT, SPMD, and Dataflow Models, Demand-driven Computation, Architectures - N-wide superscalar architectures, multi-core, multi-threaded, Memory hierarchy and transaction specific memory design, Thread Organization

UNIT II: Graphics Processor Architecture

GPU Architecture, Parallel Programming with CUDA: Processor Architecture, Interconnect, Communication, Memory Organization, and Programming Models in high performance computing architectures

UNIT III: Fundamental Design Issues in Parallel Computing

Synchronization, Scheduling, Job Allocation, Job Partitioning, Dependency Analysis, Mapping Parallel Algorithms onto Parallel Architectures, and Performance Analysis of Parallel Algorithms

UNIT IV: Power-Aware Computing and Communication

Power-aware Processing Techniques, Power-aware Memory Design, Power-aware Interconnect Design, Software Power Management, Recent Trends in High Performance Computing

Self-Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- 1. Kai Hwang, Naresh Jotwani, Advanced Computer Architecture: Parallelism, Scalability, Programmability, Tata McGraw Hill
- 2. David Kirk, Wen-mei Hwu Programming Massively Parallel Processors: A Hands-on Approach, Morgan Kaufmann
- 3. John Cheng, Max Grossman, and Ty McKercher Professional CUDA C Programming, John Wilev
- 4. David Culler, Jaswinder Pal Singh, Parallel Computer Architecture: A hardware/Software Approach, Morgan Kaufmann.
- 5. David A. Bader (Ed.), Chapman and Hall, Petascale Computing: Algorithms and Applications, CRC Computational Science Series.

Teaching Hours:45

10

08

07

05