NIRMA UNIVERSITY

SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY

M. Tech. in Electronics and Communication Engineering (Embedded System) M.Tech. Semester - II

Department Elective III

L	T	Practical component				
		LPW	PW	W	S	
2	-	2	-	-	-	3

Course Code	6EC278
Course Title	Machine Learning for Embedded Systems

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. Analyze and compare machine learning approaches as supervised, unsupervised, regression and ensemble algorithms.
- 2. Demonstrate the implementation of machine learning algorithms on embedded platform of GPU, CPU and FPGA and analyze the issues of computational complexity, memory and speed.
- 3. Apply machine learning concepts of Neural Network and Deep Learning for the given application.

Syllabus: Teaching Hours:4	5
UNIT I: Machine Learning Introduction	02
Concept of learning, designing a learning system, perspective and issues in machine learning, classification, regression, clustering, supervised and unsupervised learning, applications of machine learning and ML in embedded systems	UZ
UNIT II: Regression Techniques	04
Regression, Linear models for regression, Gradient Descent and Normal Equations Method, Multiple Linear Regression, Evaluation Measures for Regression Analysis	
UNIT III: Supervised Learning	05
Decision Trees, Bayesian Decision Theory, Parametric Methods, Dimensionality Reduction algorithms, kernel methods and reinforcement learning	
UNIT IV: Ensemble Learning	05
Techniques for generating base classifiers, techniques for combining classifiers, bootstrap, bagging, random forest, AdaBoost	
UNIT V: Unsupervised Learning	05
Clustering, k- means Algorithm, Linear models for classification, Expectation Maximization,	
Mixture of Gaussians	
UNIT VI: Neural Networks	05
Introduction, Biological motivation, NN representation and learning, Perceptron, multi-layer	
networks and back propagation, introduction to Convolutional Neural Networks and Deep Learning	
UNIT VII: Machine Learning Hardware	04
Machine Learning Hardware Tensor Flow TPU, machine learning algorithm implementation framework (open-source software libraries - Caffe, Torch, Theano), machine learning algorithms on hardware like GPU, CPU and FPGA.	
Self-Study: The self-study contents will be declared at the commencement of connector. Around 100% of the self-study.	1

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents.

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- 1. Mitchell, T. M., Machine Learning, McGraw-Hill.
- Bishop, C., Pattern Recognition and Machine Learning, Springer.
- Alpaydin, E., Introduction to Machine Learning, MIT Press.
- Duda, R.O. and Hart, P.E., Pattern Classification and Scene Analysis, John Wiley.