NIRMA UNIVERSITY | Institute: | Institute of Technology | |-----------------------|--------------------------------| | Name of Programme: | MTech Semiconductor Technology | | Course Code: | 6EC181VA22 | | Course Title: | Critical Thinking | | Course Type: | Value Added Course | | Year of Introduction: | 2024-25 | | L | T | Practical | | | | C | |---|---|-----------|----|---|---|---| | | | component | | | | | | | | LPW | PW | W | S | | | 1 | - | - | - | - | - | - | ### **Course Learning Outcomes (CLOs)** At the end of the course, students will be able to- | 1. | take better decisions | (BL 2) | |----|---|--------| | 2. | evaluate facts in an argument | (BL 3) | | 3. | apply Art of Questioning | (BL 3) | | 4. | derive truth, ambiguity, vagueness and fallacy in arguments | (BL 3) | | | Contents | Teaching | |-----------------|---|------------| | | | hours | | | | (Total 15) | | Unit I | Thinking about information and emotions, truth and knowledge | 03 | | Unit II | Recognizing arguments | 03 | | Unit III | Inductive and Deductive Reasoning | 04 | | Unit IV | Analysing defects, fallacies and avoiding them | 03 | | Unit V | Reasoning & elementary argument analysis and organized thinking | 02 | ### **Self Study:** The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents ### Suggested Readings/References: - 1. Howard Kahane & Nancy Cavender, Logic and Contemporary Rhetoric, Wadsworth Publishing. - 2. Edward de Bono, Six Thinking Hats, Penguin - 3. Selected videos showcasing cases and arguments - 4. Daniel Feldman, Critical Thinking: Make Strategic Decision with Confidence # **NIRMA UNIVERSITY** | Institute: | Institute of Technology | |-----------------------|---| | Name of Programme: | MTech Semiconductor Technology | | Course Code: | 6EC351CC24 | | Course Title: | Semiconductor Assembly, Packaging and Testing | | Course Type: | Core | | Year of Introduction: | 2024-25 | | L | T | Practical component | | | | C | |---|---|---------------------|----|---|---|---| | | | LPW | PW | W | S | | | 3 | - | 2 | - | - | - | 4 | # **Course Learning Outcomes (CLOs)** At the end of the course, students will be able to | acquire fundamental knowledge of semiconductor packaging styles and materials apply test methods on semiconductor packaging. carry out failure mode analysis and assure the quality checks operate instruments and EDA tools required for semiconductor technology assembly, packaging and test. | | | (BL3)
(BL5)
(BL5)
(BL6) | |---|--------|---|----------------------------------| | | | Contents | Teaching | | | | | hours | | | | | (Total 45) | | U | nit I | Semiconductor Packaging | 03 | | | | Introduction to Assembly Flow, Packaging History, Package Families, | | | | | Need of Packaging for Technologies. | | | Uı | nit II | Package Manufacturing Processes | 09 | | | | Packaging Assembly Technology, Wafer Thinning, Dicing, Die Attach, | | | | | Wire bonding, Flip Chip process, Flux Cleaning, Underfill, | | | | | Encapsulation, Laser Marking, Solder Ball Attach, Reflow, Singulation, | | | *** | | IC Packaging Toolsets & equipment operation, clean room operations. | 0.5 | | Un | it III | Materials used in Semiconductor Packaging | 06 | | | | Die Attached Adhesive, Underfill Materials, Bonding wires, Wafer | | | | | Bumping, Under-bump Metallurgy, Ceramics and Glasses. | 10 | | Ur | nit IV | Semiconductor Component and Package Test | 10 | | | | Overview of Testing methodologies, components tested & their characteristics, Challenges in testing, Types of Testers (Automated test | | | | | Equipment & Benchtop Testers), Components & Subsystems of Testers, | | | | | Principles of Functional Testing, Parametric/ Boundary Scan /In-Circuit | | | | | Test/ Flying Probe Test, Test Data Analysis, Design for Testability & | | | | | Tester Calibration & Maintenance. | | | \mathbf{U}_{1} | nit V | Electrical and Physical Failure Analysis | 08 | | | | Package Failure Modes, Failure Detection Mechanisms, Failure Analysis | | | | | Tools, Test Programs Debugging, Data Analytics, ESD & EMI | | | | | Management. | | | Ur | nit VI | Quality and Statistical Process Control | 05 | | | | Quality Control Plan (QCP) & Quality Management System (QMS), | | | | | Incoming Material Inspection, In-Line Quality, Measurement System | | Analysis, Statistical analysis methods, Statistical Process Control (SPC), Fault Detection Control (FDC), Run-to-Run Control (R2R), Auto Defect