NIRMA UNIVERSITY

Institute:	Institute of Technology
Name of Programme:	BTech (Electronics & Communication Engineering)
Course Code:	3EC503CC24
Course Title:	Computer Architecture
Course Type:	Core
Year of Introduction:	2024-25

L	Т	Practical			C	
		component				
		LPW	PW	W	S	
3	-	2	_	-	-	4

Course Learning Outcomes (CLOs)

At the end of the course, the students will be able to

1.	demonstrate cache mapping and virtual memory address translation schemes	(BL2)
2.	analyse the performance of single and multicycle data path	(BL4)
	evaluate the performance of the processor for given specifications	(BL5)
4.	design an arithmetic logic unit for a given instruction set.	(BL6)

	Contents	Teaching
		hours (Total 45)
Unit I	Computer Performance: Cost and performance, performance	04
	enhancement, Amdahl's law, performance estimation	
Unit II	Instruction Set Architecture of MIPS Processor: Instruction	06
	format, instruction set, addressing modes, procedure and data, assembly	
	language programming, instruction set variation	
Unit III	Arithmetic and Logical Unit (ALU) Design: Design of adders and	06
	simple ALU, multiplier and divider	
Unit IV	Data Path and Control Path of MIPS Processor: Instruction	15
	execution step's, single cycle and multi-cycle data path, performance of '	
	single and multi-cycle data path, control unit synthesis,	
	microprogramming, pipe-lined data path, pipeline performance limits, data	
	and control dependencies, branch prediction algorithms	
Unit V	Buses, Link and Interfacing: Intra and intersystem links, types of	08
CHAC V	buses and their characteristics, bus communication protocols, bus	00
	arbitration and performance, basic of interfacing and interfacing standards	
Unit VI		06
UIII VI	Memory Organisation: Memory hierarchy, SRAM, DRAM, cache	00
	organisation, cache mapping schemes, improving cache performance,	
	virtual memory, flash memory, address translation, translation look aside	
	buffer	

Self Study:

The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study content.

Laboratory Work:

Laboratory work will be based on the above syllabus with a minimum of 10 experiments to be incorporated.

Suggested Readings/References:

- 1. Behrooz Parahami, Computer Architecture from Microprocessor to Super Computer, Oxford university press
- 2. Govind Rajalu, Computer Architecture, Tata McGraw-Hill
- 3. D.Patterson and J. Hennessy, Computer Organisation and Design: The Hardware/Software Interface, Morgan Kaufman
- 4. Samir Palnitkar, Verilog HDL: A Guide to Digital Design and Synthesis, Pearson Education

Details of Laboratory Suggested List of Experiments

Sr. No.	Practical	No. of Hours
1.	Introduction to Computer Organisation and Architecture Simulator (COAS)	02
2.	Realise arithmetic and logical operations using COAS	04
3.	Design a combinational multiplier using COAS	02
4.	Implement shift-add algorithm for multiplication using Verilog HDL	02
5.	Implement shift-subtract algorithm for division using Verilog HDL	02
6.	Design and realise an n-bit barrel shifter using Generate a statement in Verilog HDL	02
7.	Design dual-port RAM using Verilog HDL which allows writing at only one port at the positive edge the clock	02
8.	Design & implement Memory Blocks using Verilog HDL & Mega Wizard Plug- In Manager	04
9.	Analysis of direct cache mapping scheme using COAS	02
10.	Analysis of set associative cache mapping scheme COAS	02
11.	Realise next address logic block for MiniMIPS instruction set	02
12.	Design and implement a control section for a single-cycle data path using Verilog HDL	02
13.	Design and implement a control section for the multi-cycle data path using Verilog HDL	04
14.	Implement a microprogrammed control unit for given instruction sets	02
15.	Design of Execution block of Microprocessor for predefined instruction set and write a test bench to verify it	04