NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY M. Tech. in Electronics & Communication Engineering (VLSI Design) M.Tech Semester - I

L	Т	Practical component				
		LPW	PW	W	S	
3	-	2	-	-	I	4

Course Code	6EC101CC22
Course Title	Digital VLSI Design

Course Learning Outcomes (CLOs):

At the end of the course, the students will be able to -

- 1. Comprehend the various VLSI design styles, approaches, and IC fabrication process from the designers' viewpoint.
- 2. Design the static and dynamic digital VLSI circuits.
- 3. Develop small digital design including layout preparation
- 4. Analyze the speed, power, and area for CMOS-based design

Syllabus: Teaching Hou	ırs: 45
UNIT I: Introduction Overview of VLSI Design Methodology, Integrated Circuit Design Flow, Design Hierarchy, Design Styles, Design Quality	05
UNIT II: Fabrication of MOSFET (Designer's View-Point) Introduction, Fabrication Process Flow: Basic Steps, The CMOS n-well Process, Layout Design Rules, Full Custom Mask Layout Design	03
UNIT III: MOS Inverter Generalized MOS Inverter, MOS Inverter with Various Loads, CMOS Inverter	07
UNIT IV: MOS Inverter: Switching Characteristics and Interconnect Effect Delay Time Definition, Calculation of Delay Times, Inverter Design with Delay Constraints, Estimation of Interconnect Parasitic, Calculation of Interconnect Delay, Switching Power Dissipation	06
UNIT V: Combinational and Sequential CMOS Logic Circuits Primitive Logic Gates; Complex Logic Circuits, Stick Diagram, Pass Transistors/Transmission Gates Sequential MOS Logic Circuits: Latches and Flip-flops	09
UNIT VI: Dynamic Logic Circuits Basic Principle of Pass Transistor, Voltage Bootstrapping, Synchronous Dynamic Circuit Techniques, High Performance Dynamic Circuit Design	07
UNIT VII: Semiconductor Memory DRAM, SRAM, Non-Volatile Memory, Flash Memory	08

Self-Study: The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents

Laboratory Work:

Laboratory work will be based on the above syllabus with a minimum of 10 experiments to be incorporated.

Suggested Readings:

- 1. Sung Mo Kang and Yusuf Leblebici CMOS Digital Integrated Circuits Analysis and Design, McGraw-Hill
- 2. Gary K.Yeap, Practical Low Power Digital VLSI Design, Kluwer Academic Publishers
- 3. Etienne Sicard, Sonia Delmas Bendhia, Basics of CMOS Cell Design, Tata McGraw-Hill