NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY M. Tech. in Electronics & Communication Engineering (VLSI Design) M.Tech Semester - I

L	Т	Practical component				
	•	LPW	PW	W	S	
3	-	2	-	-	-	4

Course Code	6EC102CC22
Course Title	Analog and Mixed Signal Design

Course Learning Outcomes (CLOs):

At the end of the course, students will be able to -

- 1. Comprehend and Design different Analog & Mixed signal circuits for various applications as per the user specifications
- 2. Analyze the differential amplifier and operational amplifier.
- 3. Design a circuit using Operational amplifier for Biomedical Applications with given specifications.

Syllabus: Teaching Hours:	: 45
UNIT I: Analog VLSI Design issues in CMOS technology, Basic MOS Models, SPICE Models and frequency dependent parameters	05
UNIT II:	05
Single stage MOS amplifier, small signal and high frequency analysis	0.5
UNIT III: Differential Amplifier, current mirrors, Bandgap references	05
UNIT IV:	05
Block level conceptualization of single- and two-stage opamps, Loop gain and stability; Dominant pole compensation, Folded cascode opamp, Fully differential opamps; common- mode feedback	
UNIT V:	05
Noise analysis for frontend amplifier, Classification of Noise	
UNIT VI:	03
Transistor level design for frontend amplifier, Variable Gain Amplifier UNIT VII:	03
Comparator design considerations, Switched capacitor circuits	
UNIT VIII:	14
Mixed signal issues in CMOS technologies, Sample-and-Hold Circuits, Analog-to-Digital Converters; Digital-to-Analog Converters, Sigma-Delta Converters	

Self Study:

The self-study contents will be declared at the commencement of semester. Around 10% of the questions will be asked from self-study contents

Laboratory Work:

Laboratory work will be based on above syllabus with minimum 10 experiments to be incorporated.

Suggested Readings:

- 1. Philip E. Allen, Douglas R. Holberg, CMOS Analog Circuit Design, Oxford
- 2. B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill
- 3. Johns and Martin, Analog Integrated Circuit Design, Willey
- 4. R Jacob Baker, CMOS Circuit Design ,layout and simulation, Third Edition, Willey