NIRMA UNIVERSITY SCHOOL OF TECHNOLOGY, INSTITUTE OF TECHNOLOGY M. Tech. in Electronics & Communication Engineering (VLSI Design) M.Tech Semester - I

L	Т	Practical component				
		LPW	PW	W	S	
2	-	2	-	-	-	3

Course Code	6EC103CC22
Course Title	Semiconductor Device Physics and
	Modelling

Course Learning Outcomes (CLOs):

At the end of the course, the students will be able to -

- 1. Comprehend the semiconductor physics, MOSFET operation and Scaling of MOSFET
- 2. Design MOSFETs of different gate lengths with lambda rules using TCAD tools for VLSI circuits
- 3. Analyse different models of MOSFETs for VLSI circuits
- 4. Implement the different MOSFETs for VLSI circuits

Syllabus:

Teaching Hours: 30

UNIT I: Semiconductor physics	03
Semiconductors, Energy bands, Thermal equilibrium carrier concentration. Excess carriers,	
quasi Fermi levels; Recombination of carriers, lifetime.	
UNIT II: MOS Transistor	12
Analysis of MOS capacitor. Calculation of threshold voltage. Static I-V characteristics. The	
MOS structure, The MOS under external Bias, Analysis of MOS capacitor. Calculation of	
threshold voltage, Structure and Operation of MOS Transistor, Current-Voltage	
Characteristic, Scaling and Small Geometry Effects	
UNIT III: Modeling of MOS Transistor	05
Various level model equation, BSIM Model, MOS capacitance model	
UNIT IV: PN Junction Diode	03
Carrier transport by drift, mobility, Carrier transport by diffusion, Continuity equation.	
Diffusion length, Ballistic Transport, Radiation Effects. Quantitative theory of PN junctions,	
Steady state I-V characteristics under forward bias, reverse bias and illumination.	
Capacitances. Dynamic behaviour under small and large signals. Breakdown mechanisms.	
UNIT V: Bi-Junction Transistor	03
Quantitative theory of bipolar junction transistors having uniformly doped regions. Static	
characteristics in active and saturation regions. Emitter efficiency, transport factor, transit	
time	
UNIT VI: MOSFET devices	04
Schottky Barriers and Ohmic Contacts, Steps of Deriving a Device Model, Types of Device	
Model, MOSFET Models, Double Gate MOSFET, FINFET	

Self-Study: The self-study contents will be declared at the commencement of the semester. Around 10% of the questions will be asked from self-study contents

Laboratory Work:

Laboratory work will be based on the above syllabus with a minimum of 10 experiments to be incorporated.

Suggested Readings:

- 1. C. Snowden, Introduction to Semiconductor Device Modeling, World Scientific
- 2. S. M. Sze, Modern Semiconductor Device Physics, John Wiley & Sons
- 3. D. Nagchoudhuri, Microelectronic Devices, Pearson Education
- 4. J. P. Colinge, Fin-FETs and other multigate Transistors, Springer